Founder | Agentic AI...ย โขย 3m
2 ways AI systems today generate smarter answers. Iโve explained both in simple steps below. ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) RAG lets AI fetch and use real-time external information to generate fact-based, updated answers. 1. ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ถ๐๐ต ๐พ๐๐ฒ๐ฟ๐ โ User asks a question or gives input. 2. ๐๐ป๐ฐ๐ผ๐ฑ๐ฒ ๐ถ๐ป๐ฝ๐๐ โ Convert it into a machine-readable format. 3. ๐ง๐ผ๐ธ๐ฒ๐ป๐ถ๐๐ฒ ๐๐ฒ๐ ๐ โ Break the query into small understandable pieces. 4. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ ๐ฒ๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด๐ โ Turn text into numeric vectors that capture meaning. 5. ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ โ Search a vector database for relevant information. 6. ๐ฆ๐ฒ๐น๐ฒ๐ฐ๐ ๐ฐ๐ผ๐ป๐๐ฒ๐ ๐ โ Pick the most useful retrieved chunks. 7. ๐๐ถ๐น๐๐ฒ๐ฟ ๐ป๐ผ๐ถ๐๐ฒ โ Remove irrelevant or low-quality data. 8. ๐๐๐๐ฒ ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ โ Combine external info with the modelโs internal knowledge. 9. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐๐ฒ โ Create an answer using both retrieved data and reasoning. 10. ๐ฉ๐ฎ๐น๐ถ๐ฑ๐ฎ๐๐ฒ ๐ผ๐๐๐ฝ๐๐ โ Check for factual accuracy and coherence. 11. ๐ฅ๐ฒ๐บ๐ผ๐๐ฒ ๐ฏ๐ถ๐ฎ๐ โ Eliminate misleading or biased phrasing. 12. ๐๐ฒ๐น๐ถ๐๐ฒ๐ฟ ๐ณ๐ถ๐ป๐ฎ๐น ๐ผ๐๐๐ฝ๐๐ โ Provide the user with a reliable, fact-backed response. __________________________________________________ ๐๐๐ (๐๐ผ๐ป๐๐ฒ๐ ๐-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) CAG lets AI remember past interactions to provide more relevant, personalized, and context-aware responses. 1. ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ถ๐๐ต ๐พ๐๐ฒ๐ฟ๐ โ User provides input or a task request. 2. ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐ ๐ถ๐ป๐ฝ๐๐ โ Convert it into a structured format for the model. 3. ๐๐ป๐ท๐ฒ๐ฐ๐ ๐ฐ๐ผ๐ป๐๐ฒ๐ ๐ โ Add relevant background (past chats, user data, goals). 4. ๐ฅ๐ฒ๐ฐ๐ฎ๐น๐น ๐ฑ๐ผ๐บ๐ฎ๐ถ๐ป ๐บ๐ฒ๐บ๐ผ๐ฟ๐ โ Bring in domain-specific knowledge or prior interactions. 5. ๐๐ฐ๐ฐ๐ฒ๐๐ ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ ๐ฏ๐ฎ๐๐ฒ โ Fetch related internal or external references. 6. ๐ ๐ฒ๐ฟ๐ด๐ฒ ๐ฑ๐ฎ๐๐ฎ โ Combine all context and knowledge sources. 7. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ ๐ผ๐๐๐ฝ๐๐ โ Create a response using this rich, aligned context. 8. ๐ฉ๐ฒ๐ฟ๐ถ๐ณ๐ ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐๐ฒ โ Check the result for logical and contextual accuracy. 9. ๐๐ ๐ฝ๐ฎ๐ป๐ฑ ๐ฐ๐ผ๐ป๐๐ฒ๐ ๐ โ Enrich the response with more relevant details if needed. 10. ๐๐น๐ถ๐ด๐ป ๐ฐ๐ผ๐ป๐๐ฒ๐ ๐ โ Ensure the output fits the userโs prior goals or conversation. 11. ๐๐ต๐ฒ๐ฐ๐ธ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐ฐ๐ โ Confirm that everything stays coherent and connected. 12. ๐๐ฒ๐น๐ถ๐๐ฒ๐ฟ ๐ณ๐ถ๐ป๐ฎ๐น ๐ผ๐๐๐ฝ๐๐ โ Provide a complete, context-aware, and consistent answer. In short: โข ๐ฅ๐๐ gives models access to the ๐ฟ๐ถ๐ด๐ต๐ ๐ถ๐ป๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐ผ๐ป. โข ๐๐๐ helps them use it ๐ถ๐ป ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐ฐ๐ผ๐ป๐๐ฒ๐ ๐. Together, they make AI systems: more accurate, more reliable, more personalized and more useful in real-world workflows. โ Repost for others in your network who can benefit from this.

Founder | Agentic AI...ย โขย 20d
Prompt vs Context vs RAG. I've explained it in a simple way below. 1. ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด Prompt Engineering is about ๐ฐ๐น๐ฒ๐ฎ๐ฟ ๐ถ๐ป๐๐๐ฟ๐๐ฐ๐๐ถ๐ผ๐ป๐, not magic words. โข ๐๐ฒ๐ณ๐ถ๐ป๐ฒ ๐๐ต๐ฒ ๐ณ๐ถ๐ป๐ฎ๐น ๐ด๐ผ๐ฎ๐น: What exactly do
See More
Founder | Agentic AI...ย โขย 2m
SLM vs LLM โ which AI model is best for you? Iโve explained both in simple steps below. ๐ฆ๐๐ (๐ฆ๐บ๐ฎ๐น๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) Lightweight AI models built for speed, focus, and on-device execution. 1. ๐๐ฒ๐ณ๐ถ๐ป๐ฒ
See More
Hey I am on Medialย โขย 10m
Retrieval-Augmented Generation (RAG) is a GenAI framework that enhances large language models (LLMs) by incorporating information from external knowledge bases, improving accuracy, relevance, and reliability of generated responses. Here's a more det
See More
Founder | Agentic AI...ย โขย 5m
How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐ง๐ต๐ฒ ๐ ๐ฎ๐ถ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐ The main ๐๐ ๐๐ด๐ฒ๐ป๐ is the ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ผ๐ฟ. It has several capabilities: โข ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ โ Stores knowledge o
See More
Founder | Agentic AI...ย โขย 6d
Most people use basic RAG but miss crucial ones. I've explained each in very simple below. 1. ๐ฆ๐ฒ๐พ๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐๐ฎ๐๐ถ๐ฐ ๐ฅ๐๐ ๐๐น๐ผ๐) Everything happens in a fixed order, step by step. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐
See More
Founder | Agentic AI...ย โขย 1m
4 core ways multi-agent AI systems are designed. Iโve explained each one in simple steps below. 1. ๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น ๐ฃ๐ฎ๐๐๐ฒ๐ฟ๐ป (๐๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) โข One input (task) comes in. โข The task is ๐๐ฝ๐น๐ถ๐ ๐ถ๐ป๐๐ผ ๐ฝ๐ฎ๐ฟ๐๐. โข Multiple AI age
See More
Founder | Agentic AI...ย โขย 2m
2 main frameworks powering todayโs AI workflows. Iโve explained both in simple steps below. ๐ก๐ด๐ก (๐๐ถ๐ป๐ฒ๐ฎ๐ฟ ๐๐ด๐ฒ๐ป๐ ๐๐น๐ผ๐) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) N8N lets AI follow a ๐๐๐ฟ๐ฎ๐ถ๐ด๐ต๐, ๐๐ถ๐๐๐ฎ๐น ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐, moving step-by-step
See More
Founder | Agentic AI...ย โขย 5m
Simple breakdown of different elements in AI systems today. Extremely easy to understand. Hereโs more: ๐๐๐ ๐ โ Great at text generation and reasoning, but limited to training data. ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ
See More
Founder | Agentic AI...ย โขย 3d
Very few people understand, how AI memory works. I've explained in simple below. ๐ฆ๐ต๐ผ๐ฟ๐-๐ง๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐(๐ฆ๐ง๐ ) 1. ๐๐ฐ๐ฐ๐ฒ๐ฝ๐ ๐ถ๐ป๐ฝ๐๐ โThe system receives your message (question/prompt). 2. ๐๐ฟ๐ฒ๐ฎ๐ธ ๐ถ๐ป๐๐ผ ๐๐ผ๐ธ๐ฒ๐ป๐โ Your mes
See More
Founder | Agentic AI...ย โขย 24d
Real Agentic AI is a multi-layered system, where each layer solves a specific challenge from reasoning to compliance: 1. LLM (Core Reasoning) โ Handles language understanding and generation. Alone, not enterprise-ready. 2. RAG (Retrieval Layer) โ G
See MoreDownload the medial app to read full posts, comements and news.