Founder | Agentic AI...ย โขย 2h
Most people use basic RAG but miss crucial ones. I've explained each in very simple below. 1. ๐ฆ๐ฒ๐พ๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐๐ฎ๐๐ถ๐ฐ ๐ฅ๐๐ ๐๐น๐ผ๐) Everything happens in a fixed order, step by step. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป 2. ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป โข The system improves or refines the question. 3. ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น ๐๐ด๐ฒ๐ป๐ - Searches relevant data from: โข Planning / Memory โข External Data Sources 4. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ โข Uses retrieved information to generate the final answer. 5. ๐๐ถ๐ป๐ฎ๐น ๐ข๐๐๐ฝ๐๐ ๐ถ๐ ๐๐ฒ๐ป๐ ๐๐ผ ๐๐ต๐ฒ ๐๐๐ฒ๐ฟ Simple Idea: ๐จ๐๐ฒ๐ฟ โ ๐ฅ๐ฒ๐ณ๐ถ๐ป๐ฒ โ ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ โ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ โ ๐๐ป๐๐๐ฒ๐ฟ Best for simple, structured queries. Not very flexible. _________________ 2. ๐ฅ๐ผ๐๐๐ฒ๐ฟ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐ฆ๐บ๐ฎ๐ฟ๐ ๐ง๐ฟ๐ฎ๐ณ๐ณ๐ถ๐ฐ ๐๐ผ๐ป๐๐ฟ๐ผ๐น๐น๐ฒ๐ฟ) A router decides which agent should handle the request. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป 2. ๐ฅ๐ผ๐๐๐ฒ๐ฟ ๐ฎ๐ป๐ฎ๐น๐๐๐ฒ๐ ๐๐ต๐ฒ ๐พ๐๐ฒ๐ฟ๐ 3. Router decides: โข If it's data-related โ Send to ๐๐ฎ๐๐ฎ ๐๐ด๐ฒ๐ป๐ โข If it's search-related โ Send to ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐๐ด๐ฒ๐ป๐ 4. Relevant agent fetches data: โข Enterprise data โข External sources 5. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐ฒ๐ ๐ณ๐ถ๐ป๐ฎ๐น ๐ฎ๐ป๐๐๐ฒ๐ฟ Simple Idea: ๐จ๐๐ฒ๐ฟ โ ๐ฅ๐ผ๐๐๐ฒ๐ฟ โ ๐๐ฒ๐๐ ๐๐ ๐ฝ๐ฒ๐ฟ๐ โ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ โ ๐๐ป๐๐๐ฒ๐ฟ Good for multi-department systems. Needs good classification logic. _________________ 3. ๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐ง๐ฒ๐ฎ๐บ๐๐ผ๐ฟ๐ธ ๐ ๐ผ๐ฑ๐ฒ๐น) Multiple agents work at the same time. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป 2. A ๐๐ฒ๐ฎ๐ฑ ๐ฅ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต๐ฒ๐ฟ ๐ฎ๐ด๐ฒ๐ป๐ coordinates the process 3. Multiple agents run in parallel: โข Search Agent โข Documentation Agent โข Citation Agent 4. All results go back to the Main Researcher 5. Main Researcher combines findings 6. ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ ๐ฐ๐ฟ๐ฒ๐ฎ๐๐ฒ๐ ๐ณ๐ถ๐ป๐ฎ๐น ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐ฎ๐ป๐๐๐ฒ๐ฟ Simple Idea: Everyone works together โ Team leader combines โ Final answer. Faster for complex research and high quality. More expensive (more compute) __________________ 4. ๐๐ฟ๐ถ๐๐ถ๐พ๐๐ฒ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐ฆ๐ฒ๐น๐ณ-๐๐บ๐ฝ๐ฟ๐ผ๐๐ถ๐ป๐ด ๐๐ผ๐ผ๐ฝ) The system checks its own work before giving final output. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป 2. System retrieves enterprise data 3. Generator creates an initial answer 4. ๐ฆ๐ฒ๐น๐ณ-๐ฅ๐ฒ๐ณ๐น๐ฒ๐ฐ๐๐ถ๐ผ๐ป / ๐๐ฟ๐ถ๐๐ถ๐พ๐๐ฒ ๐ฎ๐ด๐ฒ๐ป๐ ๐ฒ๐๐ฎ๐น๐๐ฎ๐๐ฒ๐ ๐ถ๐ 5. If quality is low: โข Query rewriting happens โข Retrieval runs again โข Generator regenerates 6. Final improved answer is delivered Simple Idea: Write โ Review โ Improve โ Finalize. Better for enterprise or high-stakes use. Slower due to re-processing. โ If youโre building AI systems: Start with โ ๐ฆ๐ฒ๐พ๐๐ฒ๐ป๐๐ถ๐ฎ๐น Scale to โ ๐ฅ๐ผ๐๐๐ฒ๐ฟ Improve quality โ ๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น + ๐๐ฟ๐ถ๐๐ถ๐พ๐๐ฒ โ Repost for people building AI systems in your network.

Founder | Agentic AI...ย โขย 5m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
Founder | Agentic AI...ย โขย 29d
Most people even today don't know this about MCP. I've explained it in simple way below. AI systems fail because control logic lives inside prompts. MCP moves that control outside the model, where it belongs. 1. ๐๐ถ๐ฟ๐ฒ๐ฐ๐ ๐๐ฃ๐ ๐ช๐ฟ๐ฎ๐ฝ๐ฝ๐ฒ๐ฟ
See More
Founder | Agentic AI...ย โขย 16d
Most non-tech people learning AI donโt get this. I've explained it in a simple way below. 1. ๐จ๐๐ฒ๐ฟ Everything starts with the ๐จ๐๐ฒ๐ฟ. โข The user wants something done โข Example: โ๐๐ช๐ฏ๐ฅ ๐ต๐ฉ๐ฆ ๐ฃ๐ฆ๐ด๐ต ๐ญ๐ข๐ฑ๐ต๐ฐ๐ฑ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ $1000โ or โ๐๐ณ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 5m
How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐ง๐ต๐ฒ ๐ ๐ฎ๐ถ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐ The main ๐๐ ๐๐ด๐ฒ๐ป๐ is the ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ผ๐ฟ. It has several capabilities: โข ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ โ Stores knowledge o
See More
Founder | Agentic AI...ย โขย 4m
How do Voice, Coding & Computer Agents work? I've explained each one in a very simple way below. 1. ๐ฉ๐ผ๐ถ๐ฐ๐ฒ ๐๐ด๐ฒ๐ป๐๐ AI systems that talk with people using speech. Examples: Vapi, Retell AI, OpenAI TTS etc. ๐ฆ๐๐ฒ๐ฝ๐: 1. ๐จ๐๐ฒ๐ฟ ๐๐ฝ๐ฒ๐ฎ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 26d
Most people building modern AI systems miss these steps. I've explained each step in a simple way below. 1. ๐ ๐๐น๐๐ถ-๐๐ด๐ฒ๐ป๐ ๐๐ป๐๐ฒ๐ฟ๐ผ๐ฝ๐ฒ๐ฟ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ How multiple AI agents work together as a system. Step-by-step: โข ๐จ๐๐ฒ๐ฟ ๐ฅ๐ฒ๐พ๐๏ฟฝ
See More
Founder | Agentic AI...ย โขย 1m
2 main frameworks powering todayโs AI workflows. Iโve explained both in simple steps below. ๐ก๐ด๐ก (๐๐ถ๐ป๐ฒ๐ฎ๐ฟ ๐๐ด๐ฒ๐ป๐ ๐๐น๐ผ๐) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) N8N lets AI follow a ๐๐๐ฟ๐ฎ๐ถ๐ด๐ต๐, ๐๐ถ๐๐๐ฎ๐น ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐, moving step-by-step
See More
Founder | Agentic AI...ย โขย 21d
Most people overlook these basics of AI Agents. I've explained it in a very simple way below. 1. ๐๐ ๐๐ด๐ฒ๐ป๐ An AI system that observes its environment, information, makes decisions, and takes actions to achieve a goal. 2. ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ
See More
Founder | Agentic AI...ย โขย 4m
6 design patterns used in AI agents. I've broken down each in simple steps. 1. ๐ฆ๐ฒ๐พ๐๐ฒ๐ป๐๐ถ๐ฎ๐น (๐๐น๐๐ฒ) โข ๐๐ผ๐ ๐ถ๐ ๐๐ผ๐ฟ๐ธ๐: The query moves through agents one after the other. โข ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ: You ask a question โ First agent processe
See More
Founder | Agentic AI...ย โขย 4d
How should you build AI Agents in 2026? I've explained each step with my learnings below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ถ๐๐ฒ ๐ฎ ๐๐น๐ฒ๐ฎ๐ฟ ๐ง๐ฎ๐๐ธ โข Define one focused responsibility for the agent. โข Set clear objectives, constraints, and expected outputs. ๐๏ฟฝ
See More
Download the medial app to read full posts, comements and news.