Founder | Agentic AI...ย โขย 21d
Most non-tech people learning AI donโt get this. I've explained it in a simple way below. 1. ๐จ๐๐ฒ๐ฟ Everything starts with the ๐จ๐๐ฒ๐ฟ. โข The user wants something done โข Example: โ๐๐ช๐ฏ๐ฅ ๐ต๐ฉ๐ฆ ๐ฃ๐ฆ๐ด๐ต ๐ญ๐ข๐ฑ๐ต๐ฐ๐ฑ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ $1000โ or โ๐๐ณ๐ช๐ต๐ฆ ๐ข๐ฏ ๐ฆ๐ฎ๐ข๐ช๐ญโ 2. ๐ค๐๐ฒ๐ฟ๐ The userโs input becomes a ๐ค๐๐ฒ๐ฟ๐. โข This is the raw request sent to the AI Agent โข It can be a question, instruction, or task Think of it as: โ๐๐ฉ๐ข๐ต ๐ฅ๐ฐ๐ฆ๐ด ๐ต๐ฉ๐ฆ ๐ถ๐ด๐ฆ๐ณ ๐ธ๐ข๐ฏ๐ต?โ 3. ๐๐ ๐๐ด๐ฒ๐ป๐ (๐ง๐ต๐ฒ ๐๐ฟ๐ฎ๐ถ๐ป / ๐๐ผ๐ป๐๐ฟ๐ผ๐น๐น๐ฒ๐ฟ) The ๐๐ ๐๐ด๐ฒ๐ป๐ is the central decision-maker. It: โข Understands the query โข Decides what to do next โข Chooses whether to use memory, tools, or the LLM โข Manages the full flow from input โ output It doesn't just answer. It plans, thinks, and acts. 4. ๐ ๐ฒ๐บ๐ผ๐ฟ๐ The AI Agent connects to ๐ ๐ฒ๐บ๐ผ๐ฟ๐ to remember things. ๐ฎ) ๐ฆ๐ต๐ผ๐ฟ๐-๐๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ โข Remembers current conversation context โข Example: what the user said 2 messages ago ๐ฏ) ๐๐ผ๐ป๐ด-๐๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ โข Stores important information for future use โข Example: user preferences, past tasks, saved facts Memory helps the agent give ๐ฝ๐ฒ๐ฟ๐๐ผ๐ป๐ฎ๐น๐ถ๐๐ฒ๐ฑ ๐ฎ๐ป๐ฑ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐ answers. 5. ๐ง๐ผ๐ผ๐น๐ If the task needs external help, the agent uses ๐ง๐ผ๐ผ๐น๐. ๐ฎ) ๐ช๐ฒ๐ฏ ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต โข To get real-time or updated information โข Example: latest news, prices, documentation ๐ฏ) ๐๐ฃ๐๐ โข To interact with other software or services โข Example: send emails, fetch data, book meetings Tools allow the agent to ๐๐ฎ๐ธ๐ฒ ๐ฎ๐ฐ๐๐ถ๐ผ๐ป๐. 6. ๐๐๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น) The AI Agent sends instructions to the ๐๐๐ . The LLM is responsible for: โข Understanding language โข Generating text โข Reasoning and logic But the LLM ๐ผ๐ป๐น๐ ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐ฑ๐ ๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐๐ต๐ฎ๐ ๐ถ๐โ๐ ๐ด๐ถ๐๐ฒ๐ป. 7. ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ To guide the LLM, the agent builds a ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐. The prompt contains: ๐ฎ) ๐ฅ๐ผ๐น๐ฒ โข Defines ๐ธ๐ฉ๐ฐ the AI should act as โข Example: โYou are a financial expertโ ๐ฏ) ๐ง๐ฎ๐๐ธ โข Defines ๐ธ๐ฉ๐ข๐ต needs to be done โข Example: โAnalyse growth trendsโ A good prompt = better output. 8. ๐ฅ๐ฒ๐ฎ๐๐ผ๐ป๐ถ๐ป๐ด The LLM then performs ๐ฅ๐ฒ๐ฎ๐๐ผ๐ป๐ถ๐ป๐ด. This includes: ๐ฎ) ๐ฃ๐น๐ฎ๐ป๐ป๐ถ๐ป๐ด โข Breaking the task into steps โข Deciding the best approach ๐ฏ) ๐ฅ๐ฒ๐ณ๐น๐ฒ๐ฐ๐๐ถ๐ผ๐ป โข Checking if the answer makes sense โข Improving clarity or correctness This is what makes AI feel โsmartโ. 9. ๐ฅ๐ฒ๐๐ฝ๐ผ๐ป๐๐ฒ After reasoning, the LLM generates a ๐ฅ๐ฒ๐๐ฝ๐ผ๐ป๐๐ฒ. โข The agent reviews it โข May store useful info in memory โข Then sends it back to the user 10. ๐๐ฎ๐ฐ๐ธ ๐๐ผ ๐จ๐๐ฒ๐ฟ Finally, the ๐จ๐๐ฒ๐ฟ ๐ฟ๐ฒ๐ฐ๐ฒ๐ถ๐๐ฒ๐ ๐๐ต๐ฒ ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐๐ฒ. โข The loop continues if the user asks again โข Memory and context keep improving the experience This is quite basic but many beginners still struggle with it โ Repost for non-technical people in your network learning AI.

Founder | Agentic AI...ย โขย 2m
Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ agent decides and builds an answer โ the answer is returned to th
See More
Startups | AI | info...ย โขย 9m
AI Agents now have muscle memory. This Python SDK records agent tool-calling patterns, replays them for repeated tasks, and falls back to agent mode for edge cases. 100% Opensource. Read more here: https://www.theunwindai.com/p/muscle-memory-for-a
See More
Founder | Agentic AI...ย โขย 6d
Most people use basic RAG but miss crucial ones. I've explained each in very simple below. 1. ๐ฆ๐ฒ๐พ๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ (๐๐ฎ๐๐ถ๐ฐ ๐ฅ๐๐ ๐๐น๐ผ๐) Everything happens in a fixed order, step by step. Step-by-step: 1. ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐
See More
Founder | Agentic AI...ย โขย 5m
How do Voice, Coding & Computer Agents work? I've explained each one in a very simple way below. 1. ๐ฉ๐ผ๐ถ๐ฐ๐ฒ ๐๐ด๐ฒ๐ป๐๐ AI systems that talk with people using speech. Examples: Vapi, Retell AI, OpenAI TTS etc. ๐ฆ๐๐ฒ๐ฝ๐: 1. ๐จ๐๐ฒ๐ฟ ๐๐ฝ๐ฒ๐ฎ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 5m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
Founder | Agentic AI...ย โขย 2m
2 main frameworks powering todayโs AI workflows. Iโve explained both in simple steps below. ๐ก๐ด๐ก (๐๐ถ๐ป๐ฒ๐ฎ๐ฟ ๐๐ด๐ฒ๐ป๐ ๐๐น๐ผ๐) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) N8N lets AI follow a ๐๐๐ฟ๐ฎ๐ถ๐ด๐ต๐, ๐๐ถ๐๐๐ฎ๐น ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐, moving step-by-step
See More
Founder | Agentic AI...ย โขย 2m
Your AI sucks because itโs stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ถ๐ฐ ๐๐๐ (๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด) โข This is the simplest level of AI systems. โข You give input text or a docu
See More
Founder | Agentic AI...ย โขย 5m
How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐ง๐ต๐ฒ ๐ ๐ฎ๐ถ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐ The main ๐๐ ๐๐ด๐ฒ๐ป๐ is the ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ผ๐ฟ. It has several capabilities: โข ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ โ Stores knowledge o
See More
Download the medial app to read full posts, comements and news.