Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Your AI sucks because itโ€™s stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐—  (๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) โ€ข This is the simplest level of AI systems. โ€ข You give input text or a document โ†’ the LLM reads it and produces an output. โ€ข It relies only on its built-in knowledge and what you provide in the prompt. โ€ข No external data, no tools, just pure text-in/text-out generation. โ€ข Useful for summaries, rewrites, explanations, question-answering, etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—Ÿ๐—Ÿ๐—  + ๐—ฅ๐—”๐—š๐˜€ (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น) & ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ โ€ข Here the LLM becomes more powerful by fetching information before answering. โ€ข Retrieval-Augmented Generation (RAG) lets the model search documents, PDFs, websites, or databases. โ€ข The system pulls relevant facts โ†’ sends them to the LLM โ†’ the LLM uses these facts to give accurate answers. โ€ข The LLM can also use tools (APIs, calculators, search engines, functions). โ€ข This reduces hallucinations and allows real-world data access. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ (The stage where LLMs become true agents) ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด โ€ข Instead of simply responding, the AI decides ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ด๐˜ต๐˜ฆ๐˜ฑ๐˜ด to take. โ€ข It can plan tasks, select tools, evaluate results, and revise its strategy. โ€ข This is what turns the model into a problem-solving agent. ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ โ€ข Agents can run multiple tools in sequence: search, databases, APIs, code execution, dashboards, etc. โ€ข Tool outputs feed back into the agentโ€™s reasoning loop. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ Agents store information across different memory types: โ€ข ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜-๐˜๐—ฒ๐—ฟ๐—บ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Current conversation or session context. โ€ข ๐—Ÿ๐—ผ๐—ป๐—ด-๐˜๐—ฒ๐—ฟ๐—บ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Persistent facts, user preferences, profiles, past knowledge. โ€ข ๐—˜๐—ฝ๐—ถ๐˜€๐—ผ๐—ฑ๐—ถ๐—ฐ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Logs of past tasks, experiences, and decisions. ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—จ๐˜€๐—ฒ๐—ฑ โ€ข ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€: Store embeddings for semantic search (meaning-based retrieval). โ€ข ๐—ฆ๐—ฒ๐—บ๐—ฎ๐—ป๐˜๐—ถ๐—ฐ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€: Store structured knowledge to support reasoning and long-term memory. ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—ข๐˜‚๐˜๐—ฝ๐˜‚๐˜ โ€ข After reasoning, retrieving, planning, and tool execution, the agent generates a polished output or performs an action. โ€ข This architecture creates AI that can autonomously handle workflows, not just answer questions. โœ… ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—™๐—น๐—ผ๐˜„ (๐—™๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—Ÿ๐—Ÿ๐—  โ†’ ๐—™๐˜‚๐—น๐—น ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜) 1. LLM processes text/documents. 2. LLM retrieves facts & uses tools to improve accuracy. 3. Full agent architecture adds decisions, planning, memory, and databases. 4. The system becomes capable of multi-step autonomous reasoning. โœ… Repost this so others can upgrade their AI from basic to powerful.

Reply
1
6

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 23d

Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด (๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ) โ€ข This step brings data into your AI system. โ€ข

See More
1 Reply
3
5

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๏ฟฝ

See More
Reply
1
1
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—š๐—ฃ๐—จ/๐—–๐—ฃ๐—จ ๐—ฃ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ (Compute Layer) โ€ข This is the engine that powers all AI computations. โ€ข You rent computing power to run y

See More
1 Reply
32
20
2
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 5m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
4 Replies
34
41
4

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2d

7 database types used in modern AI systems. Iโ€™ve explained each one in simple steps. 1. ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€ โ€ข ๐— ๐—ฎ๐—ถ๐—ป ๐—ฃ๐˜‚๐—ฟ๐—ฝ๐—ผ๐˜€๐—ฒ: Store embeddings so AI can search by meaning. โ€ข ๐—›๐—ผ๐˜„ ๐—ถ๐˜ ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€: Text/images โ†’ vectors โ†’ neare

See More
Reply
1
5
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—˜๐˜€๐˜๐—ฎ๐—ฏ๐—น๐—ถ๐˜€๐—ต ๐— ๐—ถ๐˜€๐˜€๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ผ๐—น๐—ฒ โ€ข Decide what problem the agent will solve. โ€ข Figure out who will use it. โ€ข Plan how users will interact

See More
Reply
4
15
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

SLM vs LLM โ€” which AI model is best for you? Iโ€™ve explained both in simple steps below. ๐—ฆ๐—Ÿ๐—  (๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) Lightweight AI models built for speed, focus, and on-device execution. 1. ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ

See More
Reply
2
12
Image Description

Kimiko

Startups | AI | info...ย โ€ขย 7m

Vector databases for AI memory just got disruptedโ€ฆ by MP4 files?! Video as Database: Store millions of text chunks in a single MP4 file Store millions of text chunks with blazing-fast semantic search โ€” no database required. 100% open source. Zero

See More
1 Reply
3
18

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—จ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€ (๐—ง๐—ต๐—ฒ ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ) โ€ข Real-world PDFs and documents are messy. Tables, images, signa

See More
Reply
1
5

Download the medial app to read full posts, comements and news.