Founder | Agentic AI...ย โขย 1m
Your AI sucks because itโs stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ถ๐ฐ ๐๐๐ (๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด) โข This is the simplest level of AI systems. โข You give input text or a document โ the LLM reads it and produces an output. โข It relies only on its built-in knowledge and what you provide in the prompt. โข No external data, no tools, just pure text-in/text-out generation. โข Useful for summaries, rewrites, explanations, question-answering, etc. ๐ฆ๐๐ฒ๐ฝ 2 โ ๐๐๐ + ๐ฅ๐๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น) & ๐ง๐ผ๐ผ๐น ๐จ๐๐ฒ โข Here the LLM becomes more powerful by fetching information before answering. โข Retrieval-Augmented Generation (RAG) lets the model search documents, PDFs, websites, or databases. โข The system pulls relevant facts โ sends them to the LLM โ the LLM uses these facts to give accurate answers. โข The LLM can also use tools (APIs, calculators, search engines, functions). โข This reduces hallucinations and allows real-world data access. ๐ฆ๐๐ฒ๐ฝ 3 โ ๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐๐ด๐ฒ๐ป๐ ๐๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ (The stage where LLMs become true agents) ๐๐ฒ๐ฐ๐ถ๐๐ถ๐ผ๐ป ๐ ๐ฎ๐ธ๐ถ๐ป๐ด โข Instead of simply responding, the AI decides ๐ธ๐ฉ๐ข๐ต ๐ด๐ต๐ฆ๐ฑ๐ด to take. โข It can plan tasks, select tools, evaluate results, and revise its strategy. โข This is what turns the model into a problem-solving agent. ๐ง๐ผ๐ผ๐น ๐จ๐๐ฒ โข Agents can run multiple tools in sequence: search, databases, APIs, code execution, dashboards, etc. โข Tool outputs feed back into the agentโs reasoning loop. ๐ ๐ฒ๐บ๐ผ๐ฟ๐ ๐ฆ๐๐๐๐ฒ๐บ Agents store information across different memory types: โข ๐ฆ๐ต๐ผ๐ฟ๐-๐๐ฒ๐ฟ๐บ ๐บ๐ฒ๐บ๐ผ๐ฟ๐: Current conversation or session context. โข ๐๐ผ๐ป๐ด-๐๐ฒ๐ฟ๐บ ๐บ๐ฒ๐บ๐ผ๐ฟ๐: Persistent facts, user preferences, profiles, past knowledge. โข ๐๐ฝ๐ถ๐๐ผ๐ฑ๐ถ๐ฐ ๐บ๐ฒ๐บ๐ผ๐ฟ๐: Logs of past tasks, experiences, and decisions. ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ๐ ๐จ๐๐ฒ๐ฑ โข ๐ฉ๐ฒ๐ฐ๐๐ผ๐ฟ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ๐: Store embeddings for semantic search (meaning-based retrieval). โข ๐ฆ๐ฒ๐บ๐ฎ๐ป๐๐ถ๐ฐ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ๐: Store structured knowledge to support reasoning and long-term memory. ๐๐ถ๐ป๐ฎ๐น ๐ข๐๐๐ฝ๐๐ โข After reasoning, retrieving, planning, and tool execution, the agent generates a polished output or performs an action. โข This architecture creates AI that can autonomously handle workflows, not just answer questions. โ ๐๐ถ๐ป๐ฎ๐น ๐๐น๐ผ๐ (๐๐ฟ๐ผ๐บ ๐ฆ๐ถ๐บ๐ฝ๐น๐ฒ ๐๐๐ โ ๐๐๐น๐น ๐๐ ๐๐ด๐ฒ๐ป๐) 1. LLM processes text/documents. 2. LLM retrieves facts & uses tools to improve accuracy. 3. Full agent architecture adds decisions, planning, memory, and databases. 4. The system becomes capable of multi-step autonomous reasoning. โ Repost this so others can upgrade their AI from basic to powerful.

Founder | Agentic AI...ย โขย 2m
Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐) โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ of the system. โข Examples: GPT (OpenAI), Gemini, Claude etc. โข Th
See More
Founder | Agentic AI...ย โขย 23d
Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ฒ๐๐๐ถ๐ผ๐ป & ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด (๐๐ป๐ด๐ฒ๐๐ ๐๐ฎ๐๐ฒ๐ฟ) โข This step brings data into your AI system. โข
See More
Founder | Agentic AI...ย โขย 2m
Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐๐ฎ๐๐ฒ๐ฟ โข This is where all the ๐ต๐ฒ๐ฎ๐๐ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐. โข It provides the ๐ต๐ฎ๐ฟ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 1m
Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฃ๐จ/๐๐ฃ๐จ ๐ฃ๐ฟ๐ผ๐๐ถ๐ฑ๐ฒ๐ฟ (Compute Layer) โข This is the engine that powers all AI computations. โข You rent computing power to run y
See More
Founder | Agentic AI...ย โขย 5m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
Founder | Agentic AI...ย โขย 2d
7 database types used in modern AI systems. Iโve explained each one in simple steps. 1. ๐ฉ๐ฒ๐ฐ๐๐ผ๐ฟ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ๐ โข ๐ ๐ฎ๐ถ๐ป ๐ฃ๐๐ฟ๐ฝ๐ผ๐๐ฒ: Store embeddings so AI can search by meaning. โข ๐๐ผ๐ ๐ถ๐ ๐๐ผ๐ฟ๐ธ๐: Text/images โ vectors โ neare
See More
Founder | Agentic AI...ย โขย 2m
9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐ฆ๐๐ฒ๐ฝ 1: ๐๐๐๐ฎ๐ฏ๐น๐ถ๐๐ต ๐ ๐ถ๐๐๐ถ๐ผ๐ป & ๐ฅ๐ผ๐น๐ฒ โข Decide what problem the agent will solve. โข Figure out who will use it. โข Plan how users will interact
See More
Founder | Agentic AI...ย โขย 2m
SLM vs LLM โ which AI model is best for you? Iโve explained both in simple steps below. ๐ฆ๐๐ (๐ฆ๐บ๐ฎ๐น๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) Lightweight AI models built for speed, focus, and on-device execution. 1. ๐๐ฒ๐ณ๐ถ๐ป๐ฒ
See More
Startups | AI | info...ย โขย 7m
Vector databases for AI memory just got disruptedโฆ by MP4 files?! Video as Database: Store millions of text chunks in a single MP4 file Store millions of text chunks with blazing-fast semantic search โ no database required. 100% open source. Zero
See More
Founder | Agentic AI...ย โขย 1m
Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐จ๐ป๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐๐ (๐ง๐ต๐ฒ ๐ฆ๐ผ๐๐ฟ๐ฐ๐ฒ) โข Real-world PDFs and documents are messy. Tables, images, signa
See More
Download the medial app to read full posts, comements and news.