Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Your AI sucks because itโ€™s stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐—  (๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) โ€ข This is the simplest level of AI systems. โ€ข You give input text or a document โ†’ the LLM reads it and produces an output. โ€ข It relies only on its built-in knowledge and what you provide in the prompt. โ€ข No external data, no tools, just pure text-in/text-out generation. โ€ข Useful for summaries, rewrites, explanations, question-answering, etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—Ÿ๐—Ÿ๐—  + ๐—ฅ๐—”๐—š๐˜€ (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น) & ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ โ€ข Here the LLM becomes more powerful by fetching information before answering. โ€ข Retrieval-Augmented Generation (RAG) lets the model search documents, PDFs, websites, or databases. โ€ข The system pulls relevant facts โ†’ sends them to the LLM โ†’ the LLM uses these facts to give accurate answers. โ€ข The LLM can also use tools (APIs, calculators, search engines, functions). โ€ข This reduces hallucinations and allows real-world data access. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ (The stage where LLMs become true agents) ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด โ€ข Instead of simply responding, the AI decides ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ด๐˜ต๐˜ฆ๐˜ฑ๐˜ด to take. โ€ข It can plan tasks, select tools, evaluate results, and revise its strategy. โ€ข This is what turns the model into a problem-solving agent. ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ โ€ข Agents can run multiple tools in sequence: search, databases, APIs, code execution, dashboards, etc. โ€ข Tool outputs feed back into the agentโ€™s reasoning loop. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ Agents store information across different memory types: โ€ข ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜-๐˜๐—ฒ๐—ฟ๐—บ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Current conversation or session context. โ€ข ๐—Ÿ๐—ผ๐—ป๐—ด-๐˜๐—ฒ๐—ฟ๐—บ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Persistent facts, user preferences, profiles, past knowledge. โ€ข ๐—˜๐—ฝ๐—ถ๐˜€๐—ผ๐—ฑ๐—ถ๐—ฐ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: Logs of past tasks, experiences, and decisions. ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—จ๐˜€๐—ฒ๐—ฑ โ€ข ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€: Store embeddings for semantic search (meaning-based retrieval). โ€ข ๐—ฆ๐—ฒ๐—บ๐—ฎ๐—ป๐˜๐—ถ๐—ฐ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€: Store structured knowledge to support reasoning and long-term memory. ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—ข๐˜‚๐˜๐—ฝ๐˜‚๐˜ โ€ข After reasoning, retrieving, planning, and tool execution, the agent generates a polished output or performs an action. โ€ข This architecture creates AI that can autonomously handle workflows, not just answer questions. โœ… ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—™๐—น๐—ผ๐˜„ (๐—™๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—Ÿ๐—Ÿ๐—  โ†’ ๐—™๐˜‚๐—น๐—น ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜) 1. LLM processes text/documents. 2. LLM retrieves facts & uses tools to improve accuracy. 3. Full agent architecture adds decisions, planning, memory, and databases. 4. The system becomes capable of multi-step autonomous reasoning. โœ… Repost this so others can upgrade their AI from basic to powerful.

Reply
1
6

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด (๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ) โ€ข This step brings data into your AI system. โ€ข

See More
1 Reply
3
5

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๏ฟฝ

See More
Reply
1
1
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—š๐—ฃ๐—จ/๐—–๐—ฃ๐—จ ๐—ฃ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ (Compute Layer) โ€ข This is the engine that powers all AI computations. โ€ข You rent computing power to run y

See More
1 Reply
32
20
2
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 5m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
4 Replies
34
41
4

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 22d

7 database types used in modern AI systems. Iโ€™ve explained each one in simple steps. 1. ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ๐˜€ โ€ข ๐— ๐—ฎ๐—ถ๐—ป ๐—ฃ๐˜‚๐—ฟ๐—ฝ๐—ผ๐˜€๐—ฒ: Store embeddings so AI can search by meaning. โ€ข ๐—›๐—ผ๐˜„ ๐—ถ๐˜ ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€: Text/images โ†’ vectors โ†’ neare

See More
Reply
1
5

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 8d

How should you build AI Agents in 2026? I've explained each step with my learnings below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—š๐—ถ๐˜ƒ๐—ฒ ๐—ฎ ๐—–๐—น๐—ฒ๐—ฎ๐—ฟ ๐—ง๐—ฎ๐˜€๐—ธ โ€ข Define one focused responsibility for the agent. โ€ข Set clear objectives, constraints, and expected outputs. ๐—Ÿ๏ฟฝ

See More
Reply
1
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—˜๐˜€๐˜๐—ฎ๐—ฏ๐—น๐—ถ๐˜€๐—ต ๐— ๐—ถ๐˜€๐˜€๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ผ๐—น๐—ฒ โ€ข Decide what problem the agent will solve. โ€ข Figure out who will use it. โ€ข Plan how users will interact

See More
Reply
4
15
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

SLM vs LLM โ€” which AI model is best for you? Iโ€™ve explained both in simple steps below. ๐—ฆ๐—Ÿ๐—  (๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) Lightweight AI models built for speed, focus, and on-device execution. 1. ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ

See More
Reply
2
12

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 19d

6 Chunking Methods for RAG you should know. Iโ€™ve explained it in a simple, step by step way. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—–๐—ต๐˜‚๐—ป๐—ธ๐—ถ๐—ป๐—ด? 1. Chunking means splitting large documents into smaller pieces. 2. Helps LLMs search and understand data better. 3. Essent

See More
Reply

Download the medial app to read full posts, comements and news.