Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 9h

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๐—ฑ๐˜„๐—ฎ๐—ฟ๐—ฒ (GPUs, TPUs, CPUs) and ๐—ฐ๐—น๐—ผ๐˜‚๐—ฑ ๐—ฝ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€ to run large models. โ€ข Examples: AWS, Azure, GCP etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—–๐—ผ๐—ฟ๐—ฒ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฎ๐—ฝ๐—ฝ. โ€ข They understand queries, reason, and generate answers. โ€ข Examples: GPT (OpenAI), Claude, Gemini, Mistral etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ โ€ข Frameworks ๐—ฐ๐—ผ๐—ป๐—ป๐—ฒ๐—ฐ๐˜ your model with tools, data, and workflows. โ€ข They make it easier to build chatbots, retrieval systems, or automation flows. โ€ข Examples: LangChain, Hugging Face, LLM Guard etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 4 โ€“ ๐—œ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ & ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€ โ€ข Handles how data and models interact during processing. โ€ข Includes vector databases, retrieval pipelines, and orchestration tools. โ€ข Examples: Pinecone, Weaviate, LlamaIndex etc. โ€ข Ensures your model can ๐—ณ๐—ถ๐—ป๐—ฑ, ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐˜‚๐˜€๐—ฒ the right data quickly. ๐—ฆ๐˜๐—ฒ๐—ฝ 5 โ€“ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Improves model speed, efficiency, and cost-effectiveness. โ€ข Tools help fine-tune, compress, or track performance. โ€ข Examples: OctoML, Weights & Biases, Hugging Face. โ€ข Use this layer when scaling your AI product or deploying to production. ๐—ฆ๐˜๐—ฒ๐—ฝ 6 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด๐˜€ & ๐—Ÿ๐—ฎ๐—ฏ๐—ฒ๐—น๐—ถ๐—ป๐—ด โ€ข Converts text, images, or data into ๐—ป๐˜‚๐—บ๐—ฒ๐—ฟ๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ (vectors). โ€ข Enables semantic search and understanding. โ€ข Examples: Cohere, JinaAI, Nomic, ScaleAI. ๐—ฆ๐˜๐—ฒ๐—ฝ 7 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Helps create ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฎ๐˜๐—ฎ for better training. โ€ข Generates synthetic data or expands small datasets. โ€ข Examples: Gretel, Tonic AI, Mostly. โ€ข Ideal when your dataset is limited or sensitive. ๐—ฆ๐˜๐—ฒ๐—ฝ 8 โ€“ ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด & ๐—˜๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Tracks how your model behaves in real-world use. โ€ข Detects errors, biases, or drifts over time. โ€ข Examples: WhyLabs, Fiddler, Helicone. ๐—ฆ๐˜๐—ฒ๐—ฝ 9 โ€“ ๐—”๐—œ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜† & ๐—š๐˜‚๐—ฎ๐—ฟ๐—ฑ๐—ฟ๐—ฎ๐—ถ๐—น๐˜€ โ€ข Protects your model and users from unsafe or biased outputs. โ€ข Adds filters, compliance rules, and policy enforcement. โ€ข Examples: Garak, Arthur AI, LLM Guard. โ€ข Essential for enterprise or public-facing applications. โœ… ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—™๐—น๐—ผ๐˜„ ๐—ถ๐—ป ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—ช๐—ผ๐—ฟ๐—ฑ๐˜€: 1. Start with compute and cloud setup. 2. Pick your core model (LLM). 3. Use frameworks to build workflows. 4. Connect data pipelines and vector databases. 5. Optimize and fine-tune your models. 6. Embed and label your data. 7. Generate or augment additional datasets. 8. Monitor model performance continuously. 9. Add security guardrails before deployment. โœ… ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐˜€๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜€๐—ผ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐—”๐—œ ๐—ถ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€!

Reply
1

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 8d

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
7
8
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
3 Replies
34
41
4
Image Description
Image Description

Vikas Acharya

ย โ€ขย 

Welbeย โ€ขย 6m

10 Must-Read AI and LLM Engineering Books for Developers in 2025 ๐Ÿ“• 400+ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€: https://topmate.io/arif_alam/787013 ๐Ÿ“˜ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://topma

See More
5 Replies
61
27
Image Description
Image Description

Mohammed Zaid

building hatchup.aiย โ€ขย 3m

if your building an LLM Model go through it

5 Replies
2
13

Vansh Khandelwal

Full Stack Web Devel...ย โ€ขย 1y

Databases are vital in web development, providing efficient data storage, management, and retrieval. They ensure data consistency, integrity, scalability, and security, making them essential for dynamic applications. ๐“๐ฒ๐ฉ๐ž๐ฌ ๐จ๐Ÿ ๐ƒ๐š๐ญ๐š๐›๐š๐ฌ๏ฟฝ

See More
Reply
7

Ayush Maurya

AI Pioneerย โ€ขย 10m

"Synthetic Data" is used in AI and LLM training !! โ€ข cheap โ€ข easy to produce โ€ข perfectly labelled data ~ derived from the real world data to replicate the properties and characteristics of the rela world data. It's used in training an LLM (LLMs

See More
Reply
4

Codestam Technologies

We make automations ...ย โ€ขย 7d

Struggling with research? AI collects data, statistics, examples and structures your blog in minutes. Half the blogging effortโ€”gone. . . . . #AIResearch #ContentAutomation

Reply
8
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 9d

9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—˜๐˜€๐˜๐—ฎ๐—ฏ๐—น๐—ถ๐˜€๐—ต ๐— ๐—ถ๐˜€๐˜€๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ผ๐—น๐—ฒ โ€ข Decide what problem the agent will solve. โ€ข Figure out who will use it. โ€ข Plan how users will interact

See More
Reply
4
15
1

Mukesh Jha

Mapping AI to Use-ca...ย โ€ขย 1y

Are there any data scientists here? What new ways are you using large language models (LLMs) in your everyday tasks? Do you think we should include LLM topics in data science courses? If so, what should we focus on teaching? For example: - The bas

See More
Reply
3

Download the medial app to read full posts, comements and news.