Founder | Agentic AI...ย โขย 2m
Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐๐ฎ๐๐ฒ๐ฟ โข This is where all the ๐ต๐ฒ๐ฎ๐๐ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐. โข It provides the ๐ต๐ฎ๐ฟ๐ฑ๐๐ฎ๐ฟ๐ฒ (GPUs, TPUs, CPUs) and ๐ฐ๐น๐ผ๐๐ฑ ๐ฝ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ to run large models. โข Examples: AWS, Azure, GCP etc. ๐ฆ๐๐ฒ๐ฝ 2 โ ๐๐ผ๐ฟ๐ฒ ๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐ โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ ๐ผ๐ณ ๐๐ผ๐๐ฟ ๐ฎ๐ฝ๐ฝ. โข They understand queries, reason, and generate answers. โข Examples: GPT (OpenAI), Claude, Gemini, Mistral etc. ๐ฆ๐๐ฒ๐ฝ 3 โ ๐๐ฟ๐ฎ๐บ๐ฒ๐๐ผ๐ฟ๐ธ๐ โข Frameworks ๐ฐ๐ผ๐ป๐ป๐ฒ๐ฐ๐ your model with tools, data, and workflows. โข They make it easier to build chatbots, retrieval systems, or automation flows. โข Examples: LangChain, Hugging Face, LLM Guard etc. ๐ฆ๐๐ฒ๐ฝ 4 โ ๐๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ & ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐ โข Handles how data and models interact during processing. โข Includes vector databases, retrieval pipelines, and orchestration tools. โข Examples: Pinecone, Weaviate, LlamaIndex etc. โข Ensures your model can ๐ณ๐ถ๐ป๐ฑ, ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ, ๐ฎ๐ป๐ฑ ๐๐๐ฒ the right data quickly. ๐ฆ๐๐ฒ๐ฝ 5 โ ๐ ๐ผ๐ฑ๐ฒ๐น ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป โข Improves model speed, efficiency, and cost-effectiveness. โข Tools help fine-tune, compress, or track performance. โข Examples: OctoML, Weights & Biases, Hugging Face. โข Use this layer when scaling your AI product or deploying to production. ๐ฆ๐๐ฒ๐ฝ 6 โ ๐๐ฎ๐๐ฎ ๐๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด๐ & ๐๐ฎ๐ฏ๐ฒ๐น๐ถ๐ป๐ด โข Converts text, images, or data into ๐ป๐๐บ๐ฒ๐ฟ๐ถ๐ฐ๐ฎ๐น ๐ฟ๐ฒ๐ฝ๐ฟ๐ฒ๐๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป๐ (vectors). โข Enables semantic search and understanding. โข Examples: Cohere, JinaAI, Nomic, ScaleAI. ๐ฆ๐๐ฒ๐ฝ 7 โ ๐๐ฎ๐๐ฎ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป & ๐๐๐ด๐บ๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป โข Helps create ๐บ๐ผ๐ฟ๐ฒ ๐ฑ๐ฎ๐๐ฎ for better training. โข Generates synthetic data or expands small datasets. โข Examples: Gretel, Tonic AI, Mostly. โข Ideal when your dataset is limited or sensitive. ๐ฆ๐๐ฒ๐ฝ 8 โ ๐ ๐ผ๐ป๐ถ๐๐ผ๐ฟ๐ถ๐ป๐ด & ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป โข Tracks how your model behaves in real-world use. โข Detects errors, biases, or drifts over time. โข Examples: WhyLabs, Fiddler, Helicone. ๐ฆ๐๐ฒ๐ฝ 9 โ ๐๐ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐ & ๐๐๐ฎ๐ฟ๐ฑ๐ฟ๐ฎ๐ถ๐น๐ โข Protects your model and users from unsafe or biased outputs. โข Adds filters, compliance rules, and policy enforcement. โข Examples: Garak, Arthur AI, LLM Guard. โข Essential for enterprise or public-facing applications. โ ๐๐ถ๐ป๐ฎ๐น ๐๐น๐ผ๐ ๐ถ๐ป ๐ฆ๐ถ๐บ๐ฝ๐น๐ฒ ๐ช๐ผ๐ฟ๐ฑ๐: 1. Start with compute and cloud setup. 2. Pick your core model (LLM). 3. Use frameworks to build workflows. 4. Connect data pipelines and vector databases. 5. Optimize and fine-tune your models. 6. Embed and label your data. 7. Generate or augment additional datasets. 8. Monitor model performance continuously. 9. Add security guardrails before deployment. โ ๐ฅ๐ฒ๐ฝ๐ผ๐๐ ๐๐ต๐ถ๐ ๐๐ผ ๐บ๐ผ๐ฟ๐ฒ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐ต๐ผ๐ ๐๐ ๐ถ๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ ๐๐ผ๐ฟ๐ธ๐!

Founder | Agentic AI...ย โขย 2m
Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐) โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ of the system. โข Examples: GPT (OpenAI), Gemini, Claude etc. โข Th
See More
Founder | Agentic AI...ย โขย 1m
Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐จ๐ป๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐๐ (๐ง๐ต๐ฒ ๐ฆ๐ผ๐๐ฟ๐ฐ๐ฒ) โข Real-world PDFs and documents are messy. Tables, images, signa
See More
Founder | Agentic AI...ย โขย 1m
Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฃ๐จ/๐๐ฃ๐จ ๐ฃ๐ฟ๐ผ๐๐ถ๐ฑ๐ฒ๐ฟ (Compute Layer) โข This is the engine that powers all AI computations. โข You rent computing power to run y
See More
Founder | Agentic AI...ย โขย 23d
Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ฒ๐๐๐ถ๐ผ๐ป & ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด (๐๐ป๐ด๐ฒ๐๐ ๐๐ฎ๐๐ฒ๐ฟ) โข This step brings data into your AI system. โข
See More
ย โขย

Welbeย โขย 8m
10 Must-Read AI and LLM Engineering Books for Developers in 2025 ๐ 400+ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐: https://topmate.io/arif_alam/787013 ๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topma
See More
building hatchup.aiย โขย 4m
Hugging Face now lets developers hook open-source LLMs (like Kimi K2, DeepSeek V3.1, GLM 4.5 etc.) straight into GitHub Copilot Chat in VS Code. No tab switching, just install the extension, pick your provider + model, and code with power + flexibili
See More
Founder | Agentic AI...ย โขย 1m
Your AI sucks because itโs stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ถ๐ฐ ๐๐๐ (๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด) โข This is the simplest level of AI systems. โข You give input text or a docu
See More
Founder | Agentic AI...ย โขย 6d
Most AI projects fail after deployment. Iโve explained the core problems step by step. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ฎ โข Collects raw information from multiple sources. โข Forms the foundation of every AI system. ๐.๐ด: APIs, logs, databases, user inputs. ๐ก
See More
Download the medial app to read full posts, comements and news.