Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๐—ฑ๐˜„๐—ฎ๐—ฟ๐—ฒ (GPUs, TPUs, CPUs) and ๐—ฐ๐—น๐—ผ๐˜‚๐—ฑ ๐—ฝ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€ to run large models. โ€ข Examples: AWS, Azure, GCP etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—–๐—ผ๐—ฟ๐—ฒ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฎ๐—ฝ๐—ฝ. โ€ข They understand queries, reason, and generate answers. โ€ข Examples: GPT (OpenAI), Claude, Gemini, Mistral etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ โ€ข Frameworks ๐—ฐ๐—ผ๐—ป๐—ป๐—ฒ๐—ฐ๐˜ your model with tools, data, and workflows. โ€ข They make it easier to build chatbots, retrieval systems, or automation flows. โ€ข Examples: LangChain, Hugging Face, LLM Guard etc. ๐—ฆ๐˜๐—ฒ๐—ฝ 4 โ€“ ๐—œ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ & ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€ โ€ข Handles how data and models interact during processing. โ€ข Includes vector databases, retrieval pipelines, and orchestration tools. โ€ข Examples: Pinecone, Weaviate, LlamaIndex etc. โ€ข Ensures your model can ๐—ณ๐—ถ๐—ป๐—ฑ, ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐˜‚๐˜€๐—ฒ the right data quickly. ๐—ฆ๐˜๐—ฒ๐—ฝ 5 โ€“ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Improves model speed, efficiency, and cost-effectiveness. โ€ข Tools help fine-tune, compress, or track performance. โ€ข Examples: OctoML, Weights & Biases, Hugging Face. โ€ข Use this layer when scaling your AI product or deploying to production. ๐—ฆ๐˜๐—ฒ๐—ฝ 6 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด๐˜€ & ๐—Ÿ๐—ฎ๐—ฏ๐—ฒ๐—น๐—ถ๐—ป๐—ด โ€ข Converts text, images, or data into ๐—ป๐˜‚๐—บ๐—ฒ๐—ฟ๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ (vectors). โ€ข Enables semantic search and understanding. โ€ข Examples: Cohere, JinaAI, Nomic, ScaleAI. ๐—ฆ๐˜๐—ฒ๐—ฝ 7 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Helps create ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฎ๐˜๐—ฎ for better training. โ€ข Generates synthetic data or expands small datasets. โ€ข Examples: Gretel, Tonic AI, Mostly. โ€ข Ideal when your dataset is limited or sensitive. ๐—ฆ๐˜๐—ฒ๐—ฝ 8 โ€“ ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด & ๐—˜๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€ข Tracks how your model behaves in real-world use. โ€ข Detects errors, biases, or drifts over time. โ€ข Examples: WhyLabs, Fiddler, Helicone. ๐—ฆ๐˜๐—ฒ๐—ฝ 9 โ€“ ๐—”๐—œ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜† & ๐—š๐˜‚๐—ฎ๐—ฟ๐—ฑ๐—ฟ๐—ฎ๐—ถ๐—น๐˜€ โ€ข Protects your model and users from unsafe or biased outputs. โ€ข Adds filters, compliance rules, and policy enforcement. โ€ข Examples: Garak, Arthur AI, LLM Guard. โ€ข Essential for enterprise or public-facing applications. โœ… ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—™๐—น๐—ผ๐˜„ ๐—ถ๐—ป ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—ช๐—ผ๐—ฟ๐—ฑ๐˜€: 1. Start with compute and cloud setup. 2. Pick your core model (LLM). 3. Use frameworks to build workflows. 4. Connect data pipelines and vector databases. 5. Optimize and fine-tune your models. 6. Embed and label your data. 7. Generate or augment additional datasets. 8. Monitor model performance continuously. 9. Add security guardrails before deployment. โœ… ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐˜€๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜€๐—ผ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐—”๐—œ ๐—ถ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€!

Reply
1
1

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—จ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€ (๐—ง๐—ต๐—ฒ ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ) โ€ข Real-world PDFs and documents are messy. Tables, images, signa

See More
Reply
1
5
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—š๐—ฃ๐—จ/๐—–๐—ฃ๐—จ ๐—ฃ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ (Compute Layer) โ€ข This is the engine that powers all AI computations. โ€ข You rent computing power to run y

See More
1 Reply
32
20
2
Image Description
Image Description

Vikas Acharya

ย โ€ขย 

Welbeย โ€ขย 8m

10 Must-Read AI and LLM Engineering Books for Developers in 2025 ๐Ÿ“• 400+ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€: https://topmate.io/arif_alam/787013 ๐Ÿ“˜ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://topma

See More
5 Replies
61
27
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด (๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ) โ€ข This step brings data into your AI system. โ€ข

See More
1 Reply
3
5
Image Description
Image Description

Mohammed Zaid

building hatchup.aiย โ€ขย 6m

if your building an LLM Model go through it

5 Replies
2
13

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Your AI sucks because itโ€™s stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐—  (๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) โ€ข This is the simplest level of AI systems. โ€ข You give input text or a docu

See More
Reply
1
6
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 26d

Most AI projects fail after deployment. Iโ€™ve explained the core problems step by step. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฎ๐˜๐—ฎ โ€ข Collects raw information from multiple sources. โ€ข Forms the foundation of every AI system. ๐—˜.๐—ด: APIs, logs, databases, user inputs. ๐—ก

See More
1 Reply
28
20

Inactive

AprameyaAIย โ€ขย 1y

Meta has released Llama 3.1, the first frontier-level open source AI model, with features such as expanded context length to 128K, support for eight languages, and the introduction of Llama 3.1 405B. The model offers flexibility and control, enabli

See More
Reply
2
9
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 5m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
4 Replies
34
41
4

Download the medial app to read full posts, comements and news.