Founder | Agentic AI...ย โขย 9h
Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐๐ฎ๐๐ฒ๐ฟ โข This is where all the ๐ต๐ฒ๐ฎ๐๐ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐. โข It provides the ๐ต๐ฎ๐ฟ๐ฑ๐๐ฎ๐ฟ๐ฒ (GPUs, TPUs, CPUs) and ๐ฐ๐น๐ผ๐๐ฑ ๐ฝ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ to run large models. โข Examples: AWS, Azure, GCP etc. ๐ฆ๐๐ฒ๐ฝ 2 โ ๐๐ผ๐ฟ๐ฒ ๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐ โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ ๐ผ๐ณ ๐๐ผ๐๐ฟ ๐ฎ๐ฝ๐ฝ. โข They understand queries, reason, and generate answers. โข Examples: GPT (OpenAI), Claude, Gemini, Mistral etc. ๐ฆ๐๐ฒ๐ฝ 3 โ ๐๐ฟ๐ฎ๐บ๐ฒ๐๐ผ๐ฟ๐ธ๐ โข Frameworks ๐ฐ๐ผ๐ป๐ป๐ฒ๐ฐ๐ your model with tools, data, and workflows. โข They make it easier to build chatbots, retrieval systems, or automation flows. โข Examples: LangChain, Hugging Face, LLM Guard etc. ๐ฆ๐๐ฒ๐ฝ 4 โ ๐๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ & ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐ โข Handles how data and models interact during processing. โข Includes vector databases, retrieval pipelines, and orchestration tools. โข Examples: Pinecone, Weaviate, LlamaIndex etc. โข Ensures your model can ๐ณ๐ถ๐ป๐ฑ, ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ, ๐ฎ๐ป๐ฑ ๐๐๐ฒ the right data quickly. ๐ฆ๐๐ฒ๐ฝ 5 โ ๐ ๐ผ๐ฑ๐ฒ๐น ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป โข Improves model speed, efficiency, and cost-effectiveness. โข Tools help fine-tune, compress, or track performance. โข Examples: OctoML, Weights & Biases, Hugging Face. โข Use this layer when scaling your AI product or deploying to production. ๐ฆ๐๐ฒ๐ฝ 6 โ ๐๐ฎ๐๐ฎ ๐๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด๐ & ๐๐ฎ๐ฏ๐ฒ๐น๐ถ๐ป๐ด โข Converts text, images, or data into ๐ป๐๐บ๐ฒ๐ฟ๐ถ๐ฐ๐ฎ๐น ๐ฟ๐ฒ๐ฝ๐ฟ๐ฒ๐๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป๐ (vectors). โข Enables semantic search and understanding. โข Examples: Cohere, JinaAI, Nomic, ScaleAI. ๐ฆ๐๐ฒ๐ฝ 7 โ ๐๐ฎ๐๐ฎ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป & ๐๐๐ด๐บ๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป โข Helps create ๐บ๐ผ๐ฟ๐ฒ ๐ฑ๐ฎ๐๐ฎ for better training. โข Generates synthetic data or expands small datasets. โข Examples: Gretel, Tonic AI, Mostly. โข Ideal when your dataset is limited or sensitive. ๐ฆ๐๐ฒ๐ฝ 8 โ ๐ ๐ผ๐ป๐ถ๐๐ผ๐ฟ๐ถ๐ป๐ด & ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป โข Tracks how your model behaves in real-world use. โข Detects errors, biases, or drifts over time. โข Examples: WhyLabs, Fiddler, Helicone. ๐ฆ๐๐ฒ๐ฝ 9 โ ๐๐ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐ & ๐๐๐ฎ๐ฟ๐ฑ๐ฟ๐ฎ๐ถ๐น๐ โข Protects your model and users from unsafe or biased outputs. โข Adds filters, compliance rules, and policy enforcement. โข Examples: Garak, Arthur AI, LLM Guard. โข Essential for enterprise or public-facing applications. โ ๐๐ถ๐ป๐ฎ๐น ๐๐น๐ผ๐ ๐ถ๐ป ๐ฆ๐ถ๐บ๐ฝ๐น๐ฒ ๐ช๐ผ๐ฟ๐ฑ๐: 1. Start with compute and cloud setup. 2. Pick your core model (LLM). 3. Use frameworks to build workflows. 4. Connect data pipelines and vector databases. 5. Optimize and fine-tune your models. 6. Embed and label your data. 7. Generate or augment additional datasets. 8. Monitor model performance continuously. 9. Add security guardrails before deployment. โ ๐ฅ๐ฒ๐ฝ๐ผ๐๐ ๐๐ต๐ถ๐ ๐๐ผ ๐บ๐ผ๐ฟ๐ฒ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐ต๐ผ๐ ๐๐ ๐ถ๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ ๐๐ผ๐ฟ๐ธ๐!

Founder | Agentic AI...ย โขย 8d
Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐) โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ of the system. โข Examples: GPT (OpenAI), Gemini, Claude etc. โข Th
See More
Founder | Agentic AI...ย โขย 3m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
ย โขย

Welbeย โขย 6m
10 Must-Read AI and LLM Engineering Books for Developers in 2025 ๐ 400+ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐: https://topmate.io/arif_alam/787013 ๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topma
See More
Hey I am on Medialย โขย 8m
Retrieval-Augmented Generation (RAG) is a GenAI framework that enhances large language models (LLMs) by incorporating information from external knowledge bases, improving accuracy, relevance, and reliability of generated responses. Here's a more det
See More
Full Stack Web Devel...ย โขย 1y
Databases are vital in web development, providing efficient data storage, management, and retrieval. They ensure data consistency, integrity, scalability, and security, making them essential for dynamic applications. ๐๐ฒ๐ฉ๐๐ฌ ๐จ๐ ๐๐๐ญ๐๐๐๐ฌ๏ฟฝ
See MoreFounder | Agentic AI...ย โขย 9d
9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐ฆ๐๐ฒ๐ฝ 1: ๐๐๐๐ฎ๐ฏ๐น๐ถ๐๐ต ๐ ๐ถ๐๐๐ถ๐ผ๐ป & ๐ฅ๐ผ๐น๐ฒ โข Decide what problem the agent will solve. โข Figure out who will use it. โข Plan how users will interact
See More
Mapping AI to Use-ca...ย โขย 1y
Are there any data scientists here? What new ways are you using large language models (LLMs) in your everyday tasks? Do you think we should include LLM topics in data science courses? If so, what should we focus on teaching? For example: - The bas
See MoreDownload the medial app to read full posts, comements and news.