Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4d

Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด (๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ) โ€ข This step brings data into your AI system. โ€ข Data can come from PDFs, websites, databases, APIs, or files. โ€ข Tools help clean, structure, and prepare raw data for AI. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: Kubeflow, Apache Airflow, Apache NiFi. Without this step, AI has nothing reliable to learn from. ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—ง๐—ฒ๐˜…๐˜ ๐—–๐—ต๐˜‚๐—ป๐—ธ๐—ถ๐—ป๐—ด (๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป๐˜๐—ผ ๐—ฃ๐—ถ๐—ฒ๐—ฐ๐—ฒ๐˜€) โ€ข Large documents are split into smaller parts called ๐˜ค๐˜ฉ๐˜ถ๐˜ฏ๐˜ฌ๐˜ด. โ€ข This helps AI focus on relevant information instead of entire files. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: LangChain, Haystack Pipelines. AI understands small, meaningful pieces better than long documents. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น (๐— ๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด ๐—–๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜๐—ฒ๐—ฟ) โ€ข Converts text chunks into numbers (called embeddings). โ€ข These numbers represent the ๐˜ฎ๐˜ฆ๐˜ข๐˜ฏ๐˜ช๐˜ฏ๐˜จ of the text. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: Hugging Face Transformers, Sentence Transformers, Jina AI. This allows AI to understand meaning, not just keywords. ๐—ฆ๐˜๐—ฒ๐—ฝ 4 โ€“ ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ (๐—ž๐—ป๐—ผ๐˜„๐—น๐—ฒ๐—ฑ๐—ด๐—ฒ ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฎ๐—ด๐—ฒ) โ€ข Stores embeddings in a special database built for AI search. โ€ข Enables fast, meaning-based retrieval of information. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: Milvus, Weaviate, Qdrant. This is how AI โ€œremembersโ€ large amounts of knowledge. ๐—ฆ๐˜๐—ฒ๐—ฝ 5 โ€“ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น & ๐—ฅ๐—ฎ๐—ป๐—ธ๐—ถ๐—ป๐—ด (๐—™๐—ถ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—œ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข When a user asks a question, this layer searches the vector database. โ€ข It ranks results and selects the most relevant information. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: FAISS, Weaviate, Elasticsearch KNN. Good retrieval = good AI answers. ๐—ฆ๐˜๐—ฒ๐—ฝ 6 โ€“ ๐—Ÿ๐—Ÿ๐—  ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ (๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น & ๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ) โ€ข Connects user queries, retrieved data, and AI models. โ€ข Manages prompts, workflows, agents, and tool usage. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: LangChain, LlamaIndex, CrewAI. This layer decides ๐˜ฉ๐˜ฐ๐˜ธ the AI thinks and responds. ๐—ฆ๐˜๐—ฒ๐—ฝ 7 โ€“ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น (๐—Ÿ๐—Ÿ๐— ) (๐—ง๐—ต๐—ฒ ๐—•๐—ฟ๐—ฎ๐—ถ๐—ป) โ€ข Reads context and generates human-like responses. โ€ข Performs reasoning, summarization, and explanation. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: LLaMA, Mistral, Qwen, Gemma. The model does not search data, it only reasons over what itโ€™s given. ๐—ฆ๐˜๐—ฒ๐—ฝ 8 โ€“ ๐—™๐—ฟ๐—ผ๐—ป๐˜๐—ฒ๐—ป๐—ฑ (๐—จ๐˜€๐—ฒ๐—ฟ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ณ๐—ฎ๐—ฐ๐—ฒ) โ€ข This is where users interact with your AI. โ€ข Includes chat apps, dashboards, or web interfaces. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€: Next.js, Streamlit, SvelteKit, Vue.js Even the best AI fails without a good user experience. Every step mentioned here is very important to build robust AI applications today. โœ… Repost for people who are building AI systems so they don't miss it.

1 Reply
3
5
Replies (1)

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๏ฟฝ

See More
Reply
1
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—จ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€ (๐—ง๐—ต๐—ฒ ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ) โ€ข Real-world PDFs and documents are messy. Tables, images, signa

See More
Reply
1
5
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
3 Replies
34
41
4
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—š๐—ฃ๐—จ/๐—–๐—ฃ๐—จ ๐—ฃ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ (Compute Layer) โ€ข This is the engine that powers all AI computations. โ€ข You rent computing power to run y

See More
1 Reply
32
20
2
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—˜๐˜€๐˜๐—ฎ๐—ฏ๐—น๐—ถ๐˜€๐—ต ๐— ๐—ถ๐˜€๐˜€๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ผ๐—น๐—ฒ โ€ข Decide what problem the agent will solve. โ€ข Figure out who will use it. โ€ข Plan how users will interact

See More
Reply
4
15
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 14d

The complete AI, ML & GenAI roadmap. I've given a stepwise breakdown to master them. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป (1.5โ€“2 ๐—บ๐—ผ๐—ป๐˜๐—ต๐˜€) โ€ข Build core skills: Python, math, data handling, Git. โ€ข Learn ๐—ก๐˜‚๐—บ๐—ฃ๐˜†, ๐—ฃ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜€, ๐— ๐—ฎ๐˜๐—ฝ๐—น๐—ผ๐˜๐—น๐—ถ๏ฟฝ

See More
Reply
6

Vansh Khandelwal

Full Stack Web Devel...ย โ€ขย 6m

In my blog, I explore the evolving landscape of data engineering, highlighting key trends and innovations shaping the field. The rise of cloud data engineering is revolutionizing data storage and processing, offering scalability, cost efficiency, and

See More
Reply
5

HEMANT GHUGE

Problem Zeroth, Tech...ย โ€ขย 5m

Most people think of RAG (Retrieval-Augmented Generation) as a text-only thing. But when we apply it to images, it unlocks serious potential โ€” especially in safety, retail, and surveillance. I recently explored Vision-RAG using Weaviate + LangChain

See More
Reply
4
10
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 26d

5 Layers of AI Product Development. I've explained each in short, simple steps below. 1. ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ†’ Handles everything the user sees and interacts with โ†’ Ensures login security and smooth user experience โ†’ Stores session co

See More
Reply
44
31
5

Download the medial app to read full posts, comements and news.