Founder | Agentic AI...ย โขย 4d
Most people building AI systems miss these crucial steps. I've explained the architecture in simple way below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ฒ๐๐๐ถ๐ผ๐ป & ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด (๐๐ป๐ด๐ฒ๐๐ ๐๐ฎ๐๐ฒ๐ฟ) โข This step brings data into your AI system. โข Data can come from PDFs, websites, databases, APIs, or files. โข Tools help clean, structure, and prepare raw data for AI. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: Kubeflow, Apache Airflow, Apache NiFi. Without this step, AI has nothing reliable to learn from. ๐ฆ๐๐ฒ๐ฝ 2 โ ๐ง๐ฒ๐ ๐ ๐๐ต๐๐ป๐ธ๐ถ๐ป๐ด (๐๐ฟ๐ฒ๐ฎ๐ธ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐ถ๐ป๐๐ผ ๐ฃ๐ถ๐ฒ๐ฐ๐ฒ๐) โข Large documents are split into smaller parts called ๐ค๐ฉ๐ถ๐ฏ๐ฌ๐ด. โข This helps AI focus on relevant information instead of entire files. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: LangChain, Haystack Pipelines. AI understands small, meaningful pieces better than long documents. ๐ฆ๐๐ฒ๐ฝ 3 โ ๐๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด ๐ ๐ผ๐ฑ๐ฒ๐น (๐ ๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐๐ผ๐ป๐๐ฒ๐ฟ๐๐ฒ๐ฟ) โข Converts text chunks into numbers (called embeddings). โข These numbers represent the ๐ฎ๐ฆ๐ข๐ฏ๐ช๐ฏ๐จ of the text. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: Hugging Face Transformers, Sentence Transformers, Jina AI. This allows AI to understand meaning, not just keywords. ๐ฆ๐๐ฒ๐ฝ 4 โ ๐ฉ๐ฒ๐ฐ๐๐ผ๐ฟ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ (๐๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ ๐ฆ๐๐ผ๐ฟ๐ฎ๐ด๐ฒ) โข Stores embeddings in a special database built for AI search. โข Enables fast, meaning-based retrieval of information. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: Milvus, Weaviate, Qdrant. This is how AI โremembersโ large amounts of knowledge. ๐ฆ๐๐ฒ๐ฝ 5 โ ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น & ๐ฅ๐ฎ๐ป๐ธ๐ถ๐ป๐ด (๐๐ถ๐ป๐ฑ๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ฅ๐ถ๐ด๐ต๐ ๐๐ป๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐ผ๐ป) โข When a user asks a question, this layer searches the vector database. โข It ranks results and selects the most relevant information. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: FAISS, Weaviate, Elasticsearch KNN. Good retrieval = good AI answers. ๐ฆ๐๐ฒ๐ฝ 6 โ ๐๐๐ ๐๐ฟ๐ฎ๐บ๐ฒ๐๐ผ๐ฟ๐ธ๐ (๐๐ผ๐ป๐๐ฟ๐ผ๐น & ๐ข๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ฎ๐๐ฒ๐ฟ) โข Connects user queries, retrieved data, and AI models. โข Manages prompts, workflows, agents, and tool usage. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: LangChain, LlamaIndex, CrewAI. This layer decides ๐ฉ๐ฐ๐ธ the AI thinks and responds. ๐ฆ๐๐ฒ๐ฝ 7 โ ๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น (๐๐๐ ) (๐ง๐ต๐ฒ ๐๐ฟ๐ฎ๐ถ๐ป) โข Reads context and generates human-like responses. โข Performs reasoning, summarization, and explanation. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: LLaMA, Mistral, Qwen, Gemma. The model does not search data, it only reasons over what itโs given. ๐ฆ๐๐ฒ๐ฝ 8 โ ๐๐ฟ๐ผ๐ป๐๐ฒ๐ป๐ฑ (๐จ๐๐ฒ๐ฟ ๐๐ป๐๐ฒ๐ฟ๐ณ๐ฎ๐ฐ๐ฒ) โข This is where users interact with your AI. โข Includes chat apps, dashboards, or web interfaces. ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐: Next.js, Streamlit, SvelteKit, Vue.js Even the best AI fails without a good user experience. Every step mentioned here is very important to build robust AI applications today. โ Repost for people who are building AI systems so they don't miss it.

Founder | Agentic AI...ย โขย 1m
Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐๐ฎ๐๐ฒ๐ฟ โข This is where all the ๐ต๐ฒ๐ฎ๐๐ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐. โข It provides the ๐ต๐ฎ๐ฟ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 1m
Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐) โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ of the system. โข Examples: GPT (OpenAI), Gemini, Claude etc. โข Th
See More
Founder | Agentic AI...ย โขย 1m
Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐จ๐ป๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐๐ (๐ง๐ต๐ฒ ๐ฆ๐ผ๐๐ฟ๐ฐ๐ฒ) โข Real-world PDFs and documents are messy. Tables, images, signa
See More
Founder | Agentic AI...ย โขย 4m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
Founder | Agentic AI...ย โขย 1m
Steps to building Agentic AI systems from scratch. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฃ๐จ/๐๐ฃ๐จ ๐ฃ๐ฟ๐ผ๐๐ถ๐ฑ๐ฒ๐ฟ (Compute Layer) โข This is the engine that powers all AI computations. โข You rent computing power to run y
See More
Founder | Agentic AI...ย โขย 1m
9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐ฆ๐๐ฒ๐ฝ 1: ๐๐๐๐ฎ๐ฏ๐น๐ถ๐๐ต ๐ ๐ถ๐๐๐ถ๐ผ๐ป & ๐ฅ๐ผ๐น๐ฒ โข Decide what problem the agent will solve. โข Figure out who will use it. โข Plan how users will interact
See More
Founder | Agentic AI...ย โขย 14d
The complete AI, ML & GenAI roadmap. I've given a stepwise breakdown to master them. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป (1.5โ2 ๐บ๐ผ๐ป๐๐ต๐) โข Build core skills: Python, math, data handling, Git. โข Learn ๐ก๐๐บ๐ฃ๐, ๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐, ๐ ๐ฎ๐๐ฝ๐น๐ผ๐๐น๐ถ๏ฟฝ
See More
Full Stack Web Devel...ย โขย 6m
In my blog, I explore the evolving landscape of data engineering, highlighting key trends and innovations shaping the field. The rise of cloud data engineering is revolutionizing data storage and processing, offering scalability, cost efficiency, and
See MoreProblem Zeroth, Tech...ย โขย 5m
Most people think of RAG (Retrieval-Augmented Generation) as a text-only thing. But when we apply it to images, it unlocks serious potential โ especially in safety, retail, and surveillance. I recently explored Vision-RAG using Weaviate + LangChain
See MoreFounder | Agentic AI...ย โขย 26d
5 Layers of AI Product Development. I've explained each in short, simple steps below. 1. ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ฎ๐๐ฒ๐ฟ โ Handles everything the user sees and interacts with โ Ensures login security and smooth user experience โ Stores session co
See More
Download the medial app to read full posts, comements and news.