Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 20d

Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—จ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€ (๐—ง๐—ต๐—ฒ ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ) โ€ข Real-world PDFs and documents are messy. Tables, images, signatures, headings, random layouts. โ€ข You canโ€™t directly use them for LLMs or RAG systems. โ€ข Tensorlake starts by taking in any complex document (reports, invoices, forms, etc.). ๐—ฆ๐˜๐—ฒ๐—ฝ 2 โ€“ ๐—ฆ๐—ฐ๐—ต๐—ฒ๐—บ๐—ฎ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐—ช๐—ต๐—ฎ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—ฌ๐—ผ๐˜‚ ๐—ช๐—ฎ๐—ป๐˜) โ€ข You simply tell Tensorlake ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ณ๐—ถ๐—ฒ๐—น๐—ฑ๐˜€ ๐˜†๐—ผ๐˜‚ ๐˜„๐—ฎ๐—ป๐˜ ๐—ฒ๐˜…๐˜๐—ฟ๐—ฎ๐—ฐ๐˜๐—ฒ๐—ฑ. โ€ข Example: โ€œinvoice_numberโ€, โ€œtotal_amountโ€, โ€œdateโ€, โ€œaddressโ€, etc. โ€ข This prevents irrelevant data from being processed and keeps everything clean. ๐—ฆ๐˜๐—ฒ๐—ฝ 3 โ€“ ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—ฃ๐—ฎ๐—ด๐—ฒ ๐—–๐—น๐—ฎ๐˜€๐˜€๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป (๐—™๐—ถ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ง๐—ต๐—ฒ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—ฃ๐—ฎ๐—ด๐—ฒ๐˜€) โ€ข Extracting across the ๐—ฒ๐—ป๐˜๐—ถ๐—ฟ๐—ฒ ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ is slow and inaccurate. โ€ข Tensorlake automatically ๐—ถ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐˜€ ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ฝ๐—ฎ๐—ด๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜๐—ฎ๐—ถ๐—ป๐˜€ ๐˜๐—ต๐—ฒ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜†๐—ผ๐˜‚ ๐—ป๐—ฒ๐—ฒ๐—ฑ. โ€ข This increases speed, accuracy, and reduces hallucinations. ๐—ฆ๐˜๐—ฒ๐—ฝ 4 โ€“ ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—Ÿ๐—ฎ๐˜†๐—ผ๐˜‚๐˜ ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด (๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—›๐˜‚๐—บ๐—ฎ๐—ป ๐—ฃ๐—ฎ๐—ฟ๐˜€๐—ถ๐—ป๐—ด) โ€ข Traditional OCR treats documents as flat text. โ€ข Tensorlake reads documents ๐—น๐—ถ๐—ธ๐—ฒ ๐—ต๐˜‚๐—บ๐—ฎ๐—ป๐˜€ by understanding: -> Tables -> Figures -> Paragraphs -> Sections -> Signatures -> Bounding boxes This ensures highly accurate extraction even from messy PDFs. ๐—ฆ๐˜๐—ฒ๐—ฝ 5 โ€“ ๐—˜๐—ป๐—ฎ๐—ฏ๐—น๐—ฒ ๐—–๐—ถ๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ (๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ ๐—ผ๐—ณ ๐—ช๐—ต๐—ฒ๐—ฟ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ฎ๐—บ๐—ฒ ๐—™๐—ฟ๐—ผ๐—บ) โ€ข Tensorlake gives ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜ ๐—ฐ๐—ถ๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ + ๐—ฏ๐—ผ๐˜‚๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ฏ๐—ผ๐˜…๐—ฒ๐˜€ for every extracted field. โ€ข This means your LLM can ๐˜€๐—ต๐—ผ๐˜„ ๐˜๐—ต๐—ฒ ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜ ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ for every answer. โ€ข Greatly reduces hallucination and makes your system audit-ready. ๐—ฆ๐˜๐—ฒ๐—ฝ 6 โ€“ ๐—˜๐˜…๐˜๐—ฟ๐—ฎ๐—ฐ๐˜ & ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ (๐—–๐—น๐—ฒ๐—ฎ๐—ป ๐—Ÿ๐—Ÿ๐— -๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฎ๐˜๐—ฎ) With API calls, Tensorlake gives you: โ€ข Clean structured data โ€ข Markdown of the full doc โ€ข Relevant pages โ€ข Citations + bounding boxes โ€ข This output is ๐—ฑ๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ฅ๐—”๐—š-๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜†, no cleanup needed. ๐—ฆ๐˜๐—ฒ๐—ฝ 7 โ€“ ๐—™๐—ฒ๐—ฒ๐—ฑ ๐—ถ๐˜ ๐˜๐—ผ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—Ÿ๐—Ÿ๐—  (๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป-๐—š๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ค๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€) With accurate, structured, citation-backed data, your LLM now: โ€ข Gives reliable answers โ€ข Shows exactly where info came from โ€ข Can be deployed in real workflows โ€ข This is the difference between a ๐—ฑ๐—ฒ๐—บ๐—ผ and a ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ. โœ… ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—™๐—น๐—ผ๐˜„ 1. Upload messy documents 2. Define what data you want 3. Tensorlake identifies relevant pages 4. It deeply understands layout (like a human) 5. Extracts structured data with citations 6. Outputs RAG-ready content 7. Feed to your LLM for trustworthy answers โœ… Repost for others in your network who want to build ๐—ฅ๐—”๐—š-๐—ฑ๐—ฟ๐—ถ๐˜ƒ๐—ฒ๐—ป ๐—”๐—œ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€.

Reply
1
5

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ€ข This is where all the ๐—ต๐—ฒ๐—ฎ๐˜ƒ๐˜† ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€. โ€ข It provides the ๐—ต๐—ฎ๐—ฟ๏ฟฝ

See More
Reply
1
1
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) โ€ข ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฎ๐˜€๐—ธ๐˜€ ๐—ฎ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป. Example: โ€œ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ช๏ฟฝ

See More
3 Replies
34
41
4

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 15d

Your AI sucks because itโ€™s stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐—  (๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) โ€ข This is the simplest level of AI systems. โ€ข You give input text or a docu

See More
Reply
1
6
Image Description
Image Description

Kunal sapkal

A Machine Learning E...ย โ€ขย 1y

I am thinking about an AI model with multiple languages support especially devnagari script languages , we are planning to build an RAG to parse a document and provide the data to the LLM , is this idea feasible and useful suggestions are welcomed

4 Replies
1
8
Image Description
Image Description

Nikhil Raj Singh

Entrepreneur | Build...ย โ€ขย 9m

Founders, donโ€™t overlook this! If you're raising funds, having a well-structured Data Room is a game-changer. It shows investors you're professional, transparent, and ready to scale, making the due diligence process smoother and faster. Hereโ€™s what

See More
6 Replies
18
15

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4d

The complete AI, ML & GenAI roadmap. I've given a stepwise breakdown to master them. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป (1.5โ€“2 ๐—บ๐—ผ๐—ป๐˜๐—ต๐˜€) โ€ข Build core skills: Python, math, data handling, Git. โ€ข Learn ๐—ก๐˜‚๐—บ๐—ฃ๐˜†, ๐—ฃ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜€, ๐— ๐—ฎ๐˜๐—ฝ๐—น๐—ผ๐˜๐—น๐—ถ๏ฟฝ

See More
Reply
6

Abdul Shaikh

Every Dream is Worth...ย โ€ขย 9m

๐Ÿšซ Al Agents Are Coming-90% Will Fail Without This Key Factor Al agents promise seamless automation and intelligent decision-making, but their effectiveness hinges on one crucial factor: high-quality data. Without clean, structured, and accessible

See More
Reply
2
17

HEMANT GHUGE

Problem Zeroth, Tech...ย โ€ขย 5m

Most people think of RAG (Retrieval-Augmented Generation) as a text-only thing. But when we apply it to images, it unlocks serious potential โ€” especially in safety, retail, and surveillance. I recently explored Vision-RAG using Weaviate + LangChain

See More
Reply
4
10

Download the medial app to read full posts, comements and news.