Founder | Agentic AI...ย โขย 20d
Get RAG-ready data from any unstructured document. This is crazy for AI companies. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐จ๐ป๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐๐ (๐ง๐ต๐ฒ ๐ฆ๐ผ๐๐ฟ๐ฐ๐ฒ) โข Real-world PDFs and documents are messy. Tables, images, signatures, headings, random layouts. โข You canโt directly use them for LLMs or RAG systems. โข Tensorlake starts by taking in any complex document (reports, invoices, forms, etc.). ๐ฆ๐๐ฒ๐ฝ 2 โ ๐ฆ๐ฐ๐ต๐ฒ๐บ๐ฎ ๐๐ฒ๐ณ๐ถ๐ป๐ถ๐๐ถ๐ผ๐ป (๐ช๐ต๐ฎ๐ ๐๐ฎ๐๐ฎ ๐ฌ๐ผ๐ ๐ช๐ฎ๐ป๐) โข You simply tell Tensorlake ๐ฒ๐ ๐ฎ๐ฐ๐๐น๐ ๐๐ต๐ถ๐ฐ๐ต ๐ณ๐ถ๐ฒ๐น๐ฑ๐ ๐๐ผ๐ ๐๐ฎ๐ป๐ ๐ฒ๐ ๐๐ฟ๐ฎ๐ฐ๐๐ฒ๐ฑ. โข Example: โinvoice_numberโ, โtotal_amountโ, โdateโ, โaddressโ, etc. โข This prevents irrelevant data from being processed and keeps everything clean. ๐ฆ๐๐ฒ๐ฝ 3 โ ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฃ๐ฎ๐ด๐ฒ ๐๐น๐ฎ๐๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป (๐๐ถ๐ป๐ฑ๐ถ๐ป๐ด ๐ง๐ต๐ฒ ๐ฅ๐ถ๐ด๐ต๐ ๐ฃ๐ฎ๐ด๐ฒ๐) โข Extracting across the ๐ฒ๐ป๐๐ถ๐ฟ๐ฒ ๐ฑ๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ is slow and inaccurate. โข Tensorlake automatically ๐ถ๐ฑ๐ฒ๐ป๐๐ถ๐ณ๐ถ๐ฒ๐ ๐๐ต๐ถ๐ฐ๐ต ๐ฝ๐ฎ๐ด๐ฒ ๐ฐ๐ผ๐ป๐๐ฎ๐ถ๐ป๐ ๐๐ต๐ฒ ๐ฑ๐ฎ๐๐ฎ ๐๐ผ๐ ๐ป๐ฒ๐ฒ๐ฑ. โข This increases speed, accuracy, and reduces hallucinations. ๐ฆ๐๐ฒ๐ฝ 4 โ ๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐๐ฎ๐๐ผ๐๐ ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ๐ถ๐ป๐ด (๐๐ถ๐ธ๐ฒ ๐๐๐บ๐ฎ๐ป ๐ฃ๐ฎ๐ฟ๐๐ถ๐ป๐ด) โข Traditional OCR treats documents as flat text. โข Tensorlake reads documents ๐น๐ถ๐ธ๐ฒ ๐ต๐๐บ๐ฎ๐ป๐ by understanding: -> Tables -> Figures -> Paragraphs -> Sections -> Signatures -> Bounding boxes This ensures highly accurate extraction even from messy PDFs. ๐ฆ๐๐ฒ๐ฝ 5 โ ๐๐ป๐ฎ๐ฏ๐น๐ฒ ๐๐ถ๐๐ฎ๐๐ถ๐ผ๐ป๐ (๐ฃ๐ฟ๐ผ๐ผ๐ณ ๐ผ๐ณ ๐ช๐ต๐ฒ๐ฟ๐ฒ ๐๐ฎ๐๐ฎ ๐๐ฎ๐บ๐ฒ ๐๐ฟ๐ผ๐บ) โข Tensorlake gives ๐ฒ๐ ๐ฎ๐ฐ๐ ๐ฐ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป๐ + ๐ฏ๐ผ๐๐ป๐ฑ๐ถ๐ป๐ด ๐ฏ๐ผ๐ ๐ฒ๐ for every extracted field. โข This means your LLM can ๐๐ต๐ผ๐ ๐๐ต๐ฒ ๐ฒ๐ ๐ฎ๐ฐ๐ ๐๐ผ๐๐ฟ๐ฐ๐ฒ for every answer. โข Greatly reduces hallucination and makes your system audit-ready. ๐ฆ๐๐ฒ๐ฝ 6 โ ๐๐ ๐๐ฟ๐ฎ๐ฐ๐ & ๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ (๐๐น๐ฒ๐ฎ๐ป ๐๐๐ -๐ฅ๐ฒ๐ฎ๐ฑ๐ ๐๐ฎ๐๐ฎ) With API calls, Tensorlake gives you: โข Clean structured data โข Markdown of the full doc โข Relevant pages โข Citations + bounding boxes โข This output is ๐ฑ๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ฅ๐๐-๐ฟ๐ฒ๐ฎ๐ฑ๐, no cleanup needed. ๐ฆ๐๐ฒ๐ฝ 7 โ ๐๐ฒ๐ฒ๐ฑ ๐ถ๐ ๐๐ผ ๐ฌ๐ผ๐๐ฟ ๐๐๐ (๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป-๐๐ฟ๐ฎ๐ฑ๐ฒ ๐ค๐๐ฒ๐ฟ๐ถ๐ฒ๐) With accurate, structured, citation-backed data, your LLM now: โข Gives reliable answers โข Shows exactly where info came from โข Can be deployed in real workflows โข This is the difference between a ๐ฑ๐ฒ๐บ๐ผ and a ๐ฟ๐ฒ๐ฎ๐น ๐๐๐๐๐ฒ๐บ. โ ๐๐ถ๐ป๐ฎ๐น ๐๐น๐ผ๐ 1. Upload messy documents 2. Define what data you want 3. Tensorlake identifies relevant pages 4. It deeply understands layout (like a human) 5. Extracts structured data with citations 6. Outputs RAG-ready content 7. Feed to your LLM for trustworthy answers โ Repost for others in your network who want to build ๐ฅ๐๐-๐ฑ๐ฟ๐ถ๐๐ฒ๐ป ๐๐ ๐๐๐๐๐ฒ๐บ๐.

Founder | Agentic AI...ย โขย 1m
Steps to building real-world AI systems. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐๐ฎ๐๐ฒ๐ฟ โข This is where all the ๐ต๐ฒ๐ฎ๐๐ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป๐. โข It provides the ๐ต๐ฎ๐ฟ๏ฟฝ
See More
Founder | Agentic AI...ย โขย 4m
Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. ๐ง๐ฟ๐ฎ๐ฑ๐ถ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ฅ๐๐ (๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป) โข ๐ฆ๐๐ฒ๐ฝ 1: ๐จ๐๐ฒ๐ฟ ๐ฎ๐๐ธ๐ ๐ฎ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป. Example: โ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ช๏ฟฝ
See More
Founder | Agentic AI...ย โขย 1m
Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐๐ ๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น๐) โข These are the ๐ฏ๐ฟ๐ฎ๐ถ๐ป๐ of the system. โข Examples: GPT (OpenAI), Gemini, Claude etc. โข Th
See More
Founder | Agentic AI...ย โขย 15d
Your AI sucks because itโs stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ถ๐ฐ ๐๐๐ (๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด) โข This is the simplest level of AI systems. โข You give input text or a docu
See More
A Machine Learning E...ย โขย 1y
I am thinking about an AI model with multiple languages support especially devnagari script languages , we are planning to build an RAG to parse a document and provide the data to the LLM , is this idea feasible and useful suggestions are welcomed
Hey I am on Medialย โขย 9m
Retrieval-Augmented Generation (RAG) is a GenAI framework that enhances large language models (LLMs) by incorporating information from external knowledge bases, improving accuracy, relevance, and reliability of generated responses. Here's a more det
See More
Entrepreneur | Build...ย โขย 9m
Founders, donโt overlook this! If you're raising funds, having a well-structured Data Room is a game-changer. It shows investors you're professional, transparent, and ready to scale, making the due diligence process smoother and faster. Hereโs what
See More
Founder | Agentic AI...ย โขย 4d
The complete AI, ML & GenAI roadmap. I've given a stepwise breakdown to master them. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป (1.5โ2 ๐บ๐ผ๐ป๐๐ต๐) โข Build core skills: Python, math, data handling, Git. โข Learn ๐ก๐๐บ๐ฃ๐, ๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐, ๐ ๐ฎ๐๐ฝ๐น๐ผ๐๐น๐ถ๏ฟฝ
See More
Every Dream is Worth...ย โขย 9m
๐ซ Al Agents Are Coming-90% Will Fail Without This Key Factor Al agents promise seamless automation and intelligent decision-making, but their effectiveness hinges on one crucial factor: high-quality data. Without clean, structured, and accessible
See MoreProblem Zeroth, Tech...ย โขย 5m
Most people think of RAG (Retrieval-Augmented Generation) as a text-only thing. But when we apply it to images, it unlocks serious potential โ especially in safety, retail, and surveillance. I recently explored Vision-RAG using Weaviate + LangChain
See MoreDownload the medial app to read full posts, comements and news.