Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 23d

Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ†’ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ†’ agent decides and builds an answer โ†’ the answer is returned to the user and important context is saved into short-term or long-term memory. 1) ๐—จ๐˜€๐—ฒ๐—ฟ โ†’ ๐—œ๐—ป๐—ฝ๐˜‚๐˜ User sends a message, which becomes the systemโ€™s input. This starts the whole process. 2) ๐—œ๐—ป๐—ฝ๐˜‚๐˜ โ†’ ๐—”๐—ด๐—ฒ๐—ป๐˜ The agent receives the input and decides what action to take. It plans how to respond. 3) ๐—”๐—ด๐—ฒ๐—ป๐˜ โ†’ ๐—ฅ๐—”๐—š (๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น) The agent searches long-term memory for relevant information. This helps it use real stored knowledge instead of guessing. 4) ๐—”๐—ด๐—ฒ๐—ป๐˜ โ†’ ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ง๐—ผ๐—ผ๐—น๐˜€ If needed, the agent calls tools/APIs to perform tasks. This allows it to do more than just generate text. 5) ๐—จ๐—ฝ๐—ฑ๐—ฎ๐˜๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ The agent builds a final prompt using the input, retrieved memory, and tool results. A better prompt leads to a better answer. 6) ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ฒ ๐—”๐—ป๐˜€๐˜„๐—ฒ๐—ฟ The system generates the final answer based on the prompt. This is what the user receives. 7) ๐—ฆ๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜-๐—ง๐—ฒ๐—ฟ๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† The conversation is stored in chat history for the current session. This helps the agent remember context during the chat. 8) ๐—”๐—ฑ๐—ฑ ๐˜๐—ผ ๐—Ÿ๐—ผ๐—ป๐—ด-๐—ง๐—ฒ๐—ฟ๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† (๐—ผ๐—ฝ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น) Important facts are saved permanently in long-term memory. This allows personalization and continuity across sessions. Short definitions of the main boxes (super simple): โ€ข ๐—”๐—ด๐—ฒ๐—ป๐˜: the brain/manager that decides what to do. โ€ข ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜: the full context and instructions given to the LLM to produce an answer. โ€ข ๐—ฅ๐—”๐—š (๐˜ƒ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต): fast search for similar past bits of text in long-term storage. โ€ข ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ง๐—ผ๐—ผ๐—น๐˜€: external capabilities (APIs, scripts, calculators). โ€ข ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜-๐—ง๐—ฒ๐—ฟ๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: current chat history (keeps the session coherent). โ€ข ๐—Ÿ๐—ผ๐—ป๐—ด-๐—ง๐—ฒ๐—ฟ๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†: persistent store of facts/notes across sessions (searchable with vectors). โ€ข ๐— ๐—–๐—ฃ (๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—ฃ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น): the layer that manages what the model should remember, how context is stored, and how information is organized for retrieval (metadata, permissions, indexing). Why this design is useful: โ€ข ๐—ž๐—ฒ๐—ฒ๐—ฝ๐˜€ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ฝ๐—ฒ๐—ฟ๐˜€๐—ผ๐—ป๐—ฎ๐—น: short-term for flow, long-term for personalization. โ€ข ๐—–๐—ผ๐—บ๐—ฏ๐—ถ๐—ป๐—ฒ๐˜€ ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด + ๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€: the agent can think (LLM), fetch facts (RAG), and act (tools). โ€ข ๐— ๐—ผ๐—ฑ๐˜‚๐—น๐—ฎ๐—ฟ: you can add new tools or storage without redesigning the whole system. โœ… Repost for others who struggle to understand the basic workflow of AI agents.

Reply
2
7

More like this

Recommendations from Medial

Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐—ง๐—ต๐—ฒ ๐— ๐—ฎ๐—ถ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ The main ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ is the ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ผ๐—ฟ. It has several capabilities: โ€ข ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ โ€“ Stores knowledge o

See More
Reply
6
19
1
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 23d

2 main frameworks powering todayโ€™s AI workflows. Iโ€™ve explained both in simple steps below. ๐—ก๐Ÿด๐—ก (๐—Ÿ๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—™๐—น๐—ผ๐˜„) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) N8N lets AI follow a ๐˜€๐˜๐—ฟ๐—ฎ๐—ถ๐—ด๐—ต๐˜, ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„, moving step-by-step

See More
1 Reply
6

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 25d

Your AI sucks because itโ€™s stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐—  (๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) โ€ข This is the simplest level of AI systems. โ€ข You give input text or a docu

See More
Reply
1
6

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

What exactly is Context Engineering in AI? A quick 2-minute simple breakdown for you. ๐—™๐—ถ๐—ฟ๐˜€๐˜, ๐—ต๐—ผ๐˜„ ๐—ถ๐˜€ ๐—ถ๐˜ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด? โ€ข ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด = crafting a single clever inp

See More
Reply
12

Baqer Ali

AI agent developer |...ย โ€ขย 3m

๐Ÿšจ BREAKING: Anthropic just dropped the tutorial on "Building AI Agents with Claude Agent SDK" Here's what it covers: > Agent Loop Gather context โ†’ Take action โ†’ Verify work โ†’ Repeat. Your agent searches files, executes tasks, checks its output, t

See More
Reply
1
12
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐—ฆ๐˜๐—ฒ๐—ฝ 1: ๐—˜๐˜€๐˜๐—ฎ๐—ฏ๐—น๐—ถ๐˜€๐—ต ๐— ๐—ถ๐˜€๐˜€๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ผ๐—น๐—ฒ โ€ข Decide what problem the agent will solve. โ€ข Figure out who will use it. โ€ข Plan how users will interact

See More
Reply
4
15
1
Image Description

Comet

#freelancerย โ€ขย 5m

LLMs as Agents Large Language Models (LLMs) like *GPT*, *Claude*, or *Gemini* can act as intelligent. *What does it mean to be an agent?* An *LLM agent* can: โ€ข Understand a goal โ€ข Break it into steps โ€ข Use tools or APIs โ€ข Adapt based on c

See More
Reply
3
16
1
Image Description
Image Description

The next billionaire

Unfiltered and real ...ย โ€ขย 9m

Greg Isenberg just shared 23 MCP STARTUP IDEAS TO BUILD IN 2025 (ai agents/ai/mcp ideas) and its amazing: "1. PostMortemGuy โ€“ when your app breaks (bug, outage), MCP agent traces every log, commit, and Slack message. Full incident report in seconds.

See More
9 Replies
76
57
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 8d

4 core ways multi-agent AI systems are designed. Iโ€™ve explained each one in simple steps below. 1. ๐—ฃ๐—ฎ๐—ฟ๐—ฎ๐—น๐—น๐—ฒ๐—น ๐—ฃ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป (๐˜š๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) โ€ข One input (task) comes in. โ€ข The task is ๐˜€๐—ฝ๐—น๐—ถ๐˜ ๐—ถ๐—ป๐˜๐—ผ ๐—ฝ๐—ฎ๐—ฟ๐˜๐˜€. โ€ข Multiple AI age

See More
Reply
4
10
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 15d

4 powerful loops that power Agentic AI. Hereโ€™s the easiest explanation of how each one works. ๐—”๐—š๐—˜๐—ก๐—ง๐—œ๐—– ๐—Ÿ๐—ข๐—ข๐—ฃ๐—ฆ Agentic Loops explain how AI agents think, act, learn, coordinate, and improve over time using structured cycles. 1. ๐—–๐—ผ๐—น๐—น๐—ฎ

See More
Reply
2
7

Download the medial app to read full posts, comements and news.