Founder | Agentic AI...ย โขย 23d
Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ agent decides and builds an answer โ the answer is returned to the user and important context is saved into short-term or long-term memory. 1) ๐จ๐๐ฒ๐ฟ โ ๐๐ป๐ฝ๐๐ User sends a message, which becomes the systemโs input. This starts the whole process. 2) ๐๐ป๐ฝ๐๐ โ ๐๐ด๐ฒ๐ป๐ The agent receives the input and decides what action to take. It plans how to respond. 3) ๐๐ด๐ฒ๐ป๐ โ ๐ฅ๐๐ (๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น) The agent searches long-term memory for relevant information. This helps it use real stored knowledge instead of guessing. 4) ๐๐ด๐ฒ๐ป๐ โ ๐๐ฐ๐๐ถ๐ผ๐ป ๐ง๐ผ๐ผ๐น๐ If needed, the agent calls tools/APIs to perform tasks. This allows it to do more than just generate text. 5) ๐จ๐ฝ๐ฑ๐ฎ๐๐ฒ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ The agent builds a final prompt using the input, retrieved memory, and tool results. A better prompt leads to a better answer. 6) ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐ฒ ๐๐ป๐๐๐ฒ๐ฟ The system generates the final answer based on the prompt. This is what the user receives. 7) ๐ฆ๐ฎ๐๐ฒ ๐๐ผ ๐ฆ๐ต๐ผ๐ฟ๐-๐ง๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ The conversation is stored in chat history for the current session. This helps the agent remember context during the chat. 8) ๐๐ฑ๐ฑ ๐๐ผ ๐๐ผ๐ป๐ด-๐ง๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ (๐ผ๐ฝ๐๐ถ๐ผ๐ป๐ฎ๐น) Important facts are saved permanently in long-term memory. This allows personalization and continuity across sessions. Short definitions of the main boxes (super simple): โข ๐๐ด๐ฒ๐ป๐: the brain/manager that decides what to do. โข ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐: the full context and instructions given to the LLM to produce an answer. โข ๐ฅ๐๐ (๐๐ฒ๐ฐ๐๐ผ๐ฟ ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต): fast search for similar past bits of text in long-term storage. โข ๐๐ฐ๐๐ถ๐ผ๐ป ๐ง๐ผ๐ผ๐น๐: external capabilities (APIs, scripts, calculators). โข ๐ฆ๐ต๐ผ๐ฟ๐-๐ง๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐: current chat history (keeps the session coherent). โข ๐๐ผ๐ป๐ด-๐ง๐ฒ๐ฟ๐บ ๐ ๐ฒ๐บ๐ผ๐ฟ๐: persistent store of facts/notes across sessions (searchable with vectors). โข ๐ ๐๐ฃ (๐ ๐ผ๐ฑ๐ฒ๐น ๐๐ผ๐ป๐๐ฒ๐ ๐ ๐ฃ๐ฟ๐ผ๐๐ผ๐ฐ๐ผ๐น): the layer that manages what the model should remember, how context is stored, and how information is organized for retrieval (metadata, permissions, indexing). Why this design is useful: โข ๐๐ฒ๐ฒ๐ฝ๐ ๐ฐ๐ผ๐ป๐๐ฒ๐ฟ๐๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐บ๐ฎ๐ฟ๐ ๐ฎ๐ป๐ฑ ๐ฝ๐ฒ๐ฟ๐๐ผ๐ป๐ฎ๐น: short-term for flow, long-term for personalization. โข ๐๐ผ๐บ๐ฏ๐ถ๐ป๐ฒ๐ ๐ฟ๐ฒ๐ฎ๐๐ผ๐ป๐ถ๐ป๐ด + ๐ฎ๐ฐ๐๐ถ๐ผ๐ป๐: the agent can think (LLM), fetch facts (RAG), and act (tools). โข ๐ ๐ผ๐ฑ๐๐น๐ฎ๐ฟ: you can add new tools or storage without redesigning the whole system. โ Repost for others who struggle to understand the basic workflow of AI agents.

Founder | Agentic AI...ย โขย 3m
How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐ง๐ต๐ฒ ๐ ๐ฎ๐ถ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐ The main ๐๐ ๐๐ด๐ฒ๐ป๐ is the ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ผ๐ฟ. It has several capabilities: โข ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ โ Stores knowledge o
See More
Founder | Agentic AI...ย โขย 23d
2 main frameworks powering todayโs AI workflows. Iโve explained both in simple steps below. ๐ก๐ด๐ก (๐๐ถ๐ป๐ฒ๐ฎ๐ฟ ๐๐ด๐ฒ๐ป๐ ๐๐น๐ผ๐) (๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) N8N lets AI follow a ๐๐๐ฟ๐ฎ๐ถ๐ด๐ต๐, ๐๐ถ๐๐๐ฎ๐น ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐, moving step-by-step
See More
Founder | Agentic AI...ย โขย 25d
Your AI sucks because itโs stuck at Level 1. You can easily take it to Level 3. I've explained below. ๐ฆ๐๐ฒ๐ฝ 1 โ ๐๐ฎ๐๐ถ๐ฐ ๐๐๐ (๐๐ผ๐ฐ๐๐บ๐ฒ๐ป๐ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด) โข This is the simplest level of AI systems. โข You give input text or a docu
See More
Founder | Agentic AI...ย โขย 2m
What exactly is Context Engineering in AI? A quick 2-minute simple breakdown for you. ๐๐ถ๐ฟ๐๐, ๐ต๐ผ๐ ๐ถ๐ ๐ถ๐ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ ๐ณ๐ฟ๐ผ๐บ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด? โข ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด = crafting a single clever inp
See More
AI agent developer |...ย โขย 3m
๐จ BREAKING: Anthropic just dropped the tutorial on "Building AI Agents with Claude Agent SDK" Here's what it covers: > Agent Loop Gather context โ Take action โ Verify work โ Repeat. Your agent searches files, executes tasks, checks its output, t
See More
Founder | Agentic AI...ย โขย 1m
9 Steps to Build AI Agents from Scratch. I've given a simple step by step explanation. ๐ฆ๐๐ฒ๐ฝ 1: ๐๐๐๐ฎ๐ฏ๐น๐ถ๐๐ต ๐ ๐ถ๐๐๐ถ๐ผ๐ป & ๐ฅ๐ผ๐น๐ฒ โข Decide what problem the agent will solve. โข Figure out who will use it. โข Plan how users will interact
See More
Unfiltered and real ...ย โขย 9m
Greg Isenberg just shared 23 MCP STARTUP IDEAS TO BUILD IN 2025 (ai agents/ai/mcp ideas) and its amazing: "1. PostMortemGuy โ when your app breaks (bug, outage), MCP agent traces every log, commit, and Slack message. Full incident report in seconds.
See MoreFounder | Agentic AI...ย โขย 8d
4 core ways multi-agent AI systems are designed. Iโve explained each one in simple steps below. 1. ๐ฃ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น ๐ฃ๐ฎ๐๐๐ฒ๐ฟ๐ป (๐๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ) โข One input (task) comes in. โข The task is ๐๐ฝ๐น๐ถ๐ ๐ถ๐ป๐๐ผ ๐ฝ๐ฎ๐ฟ๐๐. โข Multiple AI age
See More
Founder | Agentic AI...ย โขย 15d
4 powerful loops that power Agentic AI. Hereโs the easiest explanation of how each one works. ๐๐๐๐ก๐ง๐๐ ๐๐ข๐ข๐ฃ๐ฆ Agentic Loops explain how AI agents think, act, learn, coordinate, and improve over time using structured cycles. 1. ๐๐ผ๐น๐น๐ฎ
See More
Download the medial app to read full posts, comements and news.