Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

What exactly is Context Engineering in AI? A quick 2-minute simple breakdown for you. ๐—™๐—ถ๐—ฟ๐˜€๐˜, ๐—ต๐—ผ๐˜„ ๐—ถ๐˜€ ๐—ถ๐˜ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด? โ€ข ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด = crafting a single clever input to guide the model. โ€ข ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด = designing the entire environment of information (memory, docs, tools, prompts) so the model always has the right context to work with. These are the steps: 1. ๐——๐—ฒ๐—ฐ๐—ถ๐—ฑ๐—ฒ ๐˜๐—ต๐—ฒ ๐—ด๐—ผ๐—ฎ๐—น (๐—ฏ๐—ฒ๐—ณ๐—ผ๐—ฟ๐—ฒ ๐—ฎ๐—ป๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด) โ€ข Ask yourself: ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ฅ๐˜ฐ ๐˜ ๐˜ธ๐˜ข๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ต๐˜ฐ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฅ๐˜ถ๐˜ค๐˜ฆ? (e.g., a short email, a JSON object, a lesson plan). 2. ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ / ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ (๐—ฟ๐—ถ๐—ด๐—ต๐˜-๐˜๐—ผ๐—ฝ) โ€ข These are the modelโ€™s rules and persona. Think of it as: โ€œYou are X, follow Y style and constraints.โ€ 3. ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ (๐—ฟ๐—ถ๐—ด๐—ต๐˜-๐—บ๐—ถ๐—ฑ๐—ฑ๐—น๐—ฒ)โ€ข This is the immediate request or question from the user. It tells the model the task. 4. ๐—ง๐—ผ๐—ผ๐—น๐˜€ (๐—ฟ๐—ถ๐—ด๐—ต๐˜-๐—ฏ๐—ผ๐˜๐˜๐—ผ๐—บ)โ€ข External helpers the model can call (search, calculator, calendar, API). 5. ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ข๐˜‚๐˜๐—ฝ๐˜‚๐˜ (๐—ฏ๐—ผ๐˜๐˜๐—ผ๐—บ)โ€ข A requested format for the result so itโ€™s machine-friendly (JSON, CSV, bullet list). 6. ๐—Ÿ๐—ผ๐—ป๐—ด-๐—ง๐—ฒ๐—ฟ๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† (๐—น๐—ฒ๐—ณ๐˜-๐—ฏ๐—ผ๐˜๐˜๐—ผ๐—บ)โ€ข Stable facts about the user, company, style preferences, or past interactions you want the model to remember over many sessions. 7. ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ๐—ฑ ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ (๐—น๐—ฒ๐—ณ๐˜-๐—บ๐—ถ๐—ฑ๐—ฑ๐—น๐—ฒ)โ€ข Documents or snippets pulled in just for this query (knowledge base, product docs, previous chat lines). 8. ๐—ฆ๐˜๐—ฎ๐˜๐—ฒ (๐˜€๐—ต๐—ผ๐—ฟ๐˜-๐˜๐—ฒ๐—ฟ๐—บ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†) (๐˜๐—ผ๐—ฝ)โ€ข Whatโ€™s happening ๐˜ณ๐˜ช๐˜จ๐˜ฉ๐˜ต ๐˜ฏ๐˜ฐ๐˜ธ in the conversation โ€” recent messages, variables, or temporary flags. ๐—›๐—ผ๐˜„ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฝ๐—ฎ๐—ฟ๐˜๐˜€ ๐˜„๐—ผ๐—ฟ๐—ธ ๐˜๐—ผ๐—ด๐—ฒ๐˜๐—ต๐—ฒ๐—ฟ (๐—ณ๐—น๐—ผ๐˜„) 1. System prompt sets the rules first (how the model should behave). 2. Long-term memory and retrieved context provide background facts the model should use. 3. State supplies immediate conversation history and live variables. 4. User prompt gives the specific task. 5. The model can call Tools if it needs real-time info or actions. 6. The model returns the answer, ideally in the Structured Output format you asked for. โœ… Repost for others who want to understand Context Engineering.

Reply
12

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

Fine-tune vs Prompt vs Context Engineering. Simple step-by-step breakdown for each approach. ๐—™๐—ถ๐—ป๐—ฒ-๐—ง๐˜‚๐—ป๐—ถ๐—ป๐—ด (๐— ๐—ผ๐—ฑ๐—ฒ๐—น-๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป) ๐—™๐—น๐—ผ๐˜„: 1. Collect Data โ†’ Gather domain-specific info (e.g., legal docs). 2. Sta

See More
Reply
2
13

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 19d

Prompt vs Context vs RAG. I've explained it in a simple way below. 1. ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด Prompt Engineering is about ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ ๐—ถ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€, not magic words. โ€ข ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ป๐—ฎ๐—น ๐—ด๐—ผ๐—ฎ๐—น: What exactly do

See More
Reply
1
Image Description
Image Description

Vishu Bheda

ย โ€ขย 

Medialย โ€ขย 6m

๐—ง๐—ต๐—ฒ ๐Ÿฑ ๐—”๐—œ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜€๐˜๐˜‚๐—ฐ๐—ธ ๐˜„๐—ถ๐˜๐—ต ๐—บ๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—ฎ๐—ณ๐˜๐—ฒ๐—ฟ ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต (๐—ป๐—ผ๐˜ โ€œ๐—ฏ๐—ฒ๐˜€๐˜,โ€ ๐—ท๐˜‚๐˜€๐˜ ๐˜‚๐—ป๐—ณ๐—ผ๐—ฟ๐—ด๐—ฒ๐˜๐˜๐—ฎ๐—ฏ๐—น๐—ฒ): โ€ข Claude 3.5 Sonnet โ€“ balanced, smooth, felt almost human. โ€ข o3 โ€“ search + s

See More
12 Replies
3
20

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Most people building modern AI systems miss these steps. I've explained each step in a simple way below. 1. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† How multiple AI agents work together as a system. Step-by-step: โ€ข ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฅ๐—ฒ๐—พ๐˜‚๏ฟฝ

See More
2 Replies
1
8
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Most people don't even know these basics of RAG. I've explained it in a simple way below. 1. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ถ๐—ป๐—ด Convert documents into a format that AI can quickly search later. Step-by-step: โ€ข ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜: You start with files like PDFs, Word

See More
4 Replies
21
33
4

AMBIT VITIN

Helping founders fix...ย โ€ขย 6m

Most of us rely on prompting to get the work done through ChatGPT. Even I used to follow this technique until one of my friends taught me how to master Context Engineering. Here's how it works: Prompting vs Context Engineering Prompting is about a

See More
Reply
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

2 ways AI systems today generate smarter answers. Iโ€™ve explained both in simple steps below. ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) RAG lets AI fetch and use real-time external information to ge

See More
Reply
1
7

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ†’ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ†’ agent decides and builds an answer โ†’ the answer is returned to th

See More
Reply
2
7

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Everyone has access to the same AI now. So why do some teams still outperform others? The difference is not the model. It is the context around it. Two teams can use the same GPT, Claude, or Gemini and get completely different outcomes. One ends up

See More
Reply
5

Kavin AI Explorer

ย โ€ขย 

Earneyย โ€ขย 7m

Same Performance as Claude Sonnet 4 next to Kimi K2 Qwen3-Coder is simply one of the best coding model we've ever seen. โ†’ Still 100% open source โ†’ Up to 1M context window ๐Ÿ”ฅ โ†’ 35B active parameters They're releasing CLI tool as well โ†“

Reply
3

Download the medial app to read full posts, comements and news.