Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

Fine-tune vs Prompt vs Context Engineering. Simple step-by-step breakdown for each approach. ๐—™๐—ถ๐—ป๐—ฒ-๐—ง๐˜‚๐—ป๐—ถ๐—ป๐—ด (๐— ๐—ผ๐—ฑ๐—ฒ๐—น-๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป) ๐—™๐—น๐—ผ๐˜„: 1. Collect Data โ†’ Gather domain-specific info (e.g., legal docs). 2. Start with Base Model โ†’ Use an existing large AI. 3. Train with Examples โ†’ Feed dataset with correct answers. 4. Adjust Model Settings โ†’ Update internal โ€œmemory.โ€ 5. Store New Knowledge โ†’ Learning stays permanently. 6. Test Results โ†’ Check accuracy. 7. Update Training if Needed โ†’ Add more data if required. 8. Deploy Fine-Tuned Model โ†’ Ready for real-world use. ๐Ÿ‘‰ Best when you need the model to ๐—ฑ๐—ฒ๐—ฒ๐—ฝ๐—น๐˜† ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—ฎ ๐—ณ๐—ถ๐—ฒ๐—น๐—ฑ. __________________________________________ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด (๐—œ๐—ป๐—ฝ๐˜‚๐˜-๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป) ๐—™๐—น๐—ผ๐˜„: 1. Set Goal โ†’ Define what the model should do. 2. Choose Prompt Style โ†’ Write clear instructions. 3. Provide Examples โ†’ Show sample inputs/outputs. 4. Test & Improve โ†’ Try versions, refine wording. 5. Balance Creativity & Logic โ†’ Keep clear but flexible. 6. Integrate Tools โ†’ Use with supporting software. 7. Gather Feedback โ†’ Learn from users. 8. Ensure Consistency โ†’ Stable, repeatable answers. ๐Ÿ‘‰ Best when you want ๐—ฏ๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—ฎ๐—ป๐˜€๐˜„๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด. ___________________________________________ ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด (๐—ฅ๐˜‚๐—ป๐˜๐—ถ๐—บ๐—ฒ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น) ๐—™๐—น๐—ผ๐˜„: 1. Set Context Scope โ†’ Decide needed info. 2. Chunk Data โ†’ Break into small pieces & embed. 3. Store in Vector DB โ†’ Make searchable. 4. Retrieve Relevant Chunks โ†’ Fetch only whatโ€™s useful. 5. Query by User Input โ†’ Match based on question. 6. Pick Closest Matches โ†’ Get high-similarity results. 7. Build Context โ†’ Assemble chunks. 8. Insert into Prompt โ†’ Add to model input. 9. Stay Within Token Limit โ†’ Avoid overload. 10. Keep Order & Format โ†’ Ensure clarity. 11. Update Context โ†’ Adjust as conversation grows. ๐Ÿ‘‰ Best when you want AI to ๐—ฎ๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€ ๐—น๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—น๐—ถ๐˜ƒ๐—ฒ to give accurate and context-aware responses. โœ… ๐—œ๐—ป ๐˜€๐—ต๐—ผ๐—ฟ๐˜: โ€ข ๐—™๐—ถ๐—ป๐—ฒ-๐—ง๐˜‚๐—ป๐—ถ๐—ป๐—ด โ†’ Changes the model itself (permanent learning). โ€ข ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด โ†’ Changes ๐˜ฉ๐˜ฐ๐˜ธ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ด๐˜ฌ (better instructions). โ€ข ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด โ†’ Changes ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ฏ๐˜ง๐˜ฐ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ด๐˜ฆ๐˜ฆ๐˜ด (runtime memory). โœ… Repost for others in your network to help them understand.

Reply
2
13

More like this

Recommendations from Medial

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 3m

What exactly is Context Engineering in AI? A quick 2-minute simple breakdown for you. ๐—™๐—ถ๐—ฟ๐˜€๐˜, ๐—ต๐—ผ๐˜„ ๐—ถ๐˜€ ๐—ถ๐˜ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด? โ€ข ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด = crafting a single clever inp

See More
Reply
12
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

2 core ways AI learns and when to use each. Iโ€™ve explained each in a simple, detailed way below. ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ 1: ๐—˜๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ž๐—ป๐—ผ๐˜„๐—น๐—ฒ๐—ฑ๐—ด๐—ฒ ๐—ฅ๐—”๐—š โ€ข Pulls information from outside sources like APIs, PDFs, or databases โ€ข Answers are based on

See More
1 Reply
2
5

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 6d

Prompt vs Context vs RAG. I've explained it in a simple way below. 1. ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด Prompt Engineering is about ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ ๐—ถ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€, not magic words. โ€ข ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ป๐—ฎ๐—น ๐—ด๐—ผ๐—ฎ๐—น: What exactly do

See More
Reply
1
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Most people don't even know these basics of RAG. I've explained it in a simple way below. 1. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ถ๐—ป๐—ด Convert documents into a format that AI can quickly search later. Step-by-step: โ€ข ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜: You start with files like PDFs, Word

See More
4 Replies
21
33
4

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 7d

6 Chunking Methods for RAG you should know. Iโ€™ve explained it in a simple, step by step way. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—–๐—ต๐˜‚๐—ป๐—ธ๐—ถ๐—ป๐—ด? 1. Chunking means splitting large documents into smaller pieces. 2. Helps LLMs search and understand data better. 3. Essent

See More
Reply

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 7d

6 Chunking Methods for RAG you should know. Iโ€™ve explained it in a simple, step by step way. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—–๐—ต๐˜‚๐—ป๐—ธ๐—ถ๐—ป๐—ด? 1. Chunking means splitting large documents into smaller pieces. 2. Helps LLMs search and understand data better. 3. Essent

See More
Reply
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ†’ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ†’ agent decides and builds an answer โ†’ the answer is returned to th

See More
Reply
2
7
Image Description

Account Deleted

Hey I am on Medialย โ€ขย 8m

โšก๏ธ GPT-4.1 just dropped in ChatGPT This model is a beast: โšก๏ธ Best-in-class for coding โ€” spots bugs, writes full web apps, no sweat. โšก๏ธ Handles complex instructions โ€” throw in your massive, multi-step prompt. Itโ€™ll get it. โšก๏ธ Insane context window โ€”

See More
1 Reply
9

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 18d

Most people building modern AI systems miss these steps. I've explained each step in a simple way below. 1. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† How multiple AI agents work together as a system. Step-by-step: โ€ข ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฅ๐—ฒ๐—พ๐˜‚๏ฟฝ

See More
2 Replies
1
8

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 19d

Everyone has access to the same AI now. So why do some teams still outperform others? The difference is not the model. It is the context around it. Two teams can use the same GPT, Claude, or Gemini and get completely different outcomes. One ends up

See More
Reply
5

Download the medial app to read full posts, comements and news.