Founder | Agentic AI...ย โขย 2m
Fine-tune vs Prompt vs Context Engineering. Simple step-by-step breakdown for each approach. ๐๐ถ๐ป๐ฒ-๐ง๐๐ป๐ถ๐ป๐ด (๐ ๐ผ๐ฑ๐ฒ๐น-๐๐ฒ๐๐ฒ๐น ๐๐๐๐๐ผ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป) ๐๐น๐ผ๐: 1. Collect Data โ Gather domain-specific info (e.g., legal docs). 2. Start with Base Model โ Use an existing large AI. 3. Train with Examples โ Feed dataset with correct answers. 4. Adjust Model Settings โ Update internal โmemory.โ 5. Store New Knowledge โ Learning stays permanently. 6. Test Results โ Check accuracy. 7. Update Training if Needed โ Add more data if required. 8. Deploy Fine-Tuned Model โ Ready for real-world use. ๐ Best when you need the model to ๐ฑ๐ฒ๐ฒ๐ฝ๐น๐ ๐๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐ฎ ๐ณ๐ถ๐ฒ๐น๐ฑ. __________________________________________ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด (๐๐ป๐ฝ๐๐-๐๐ฒ๐๐ฒ๐น ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป) ๐๐น๐ผ๐: 1. Set Goal โ Define what the model should do. 2. Choose Prompt Style โ Write clear instructions. 3. Provide Examples โ Show sample inputs/outputs. 4. Test & Improve โ Try versions, refine wording. 5. Balance Creativity & Logic โ Keep clear but flexible. 6. Integrate Tools โ Use with supporting software. 7. Gather Feedback โ Learn from users. 8. Ensure Consistency โ Stable, repeatable answers. ๐ Best when you want ๐ฏ๐ฒ๐๐๐ฒ๐ฟ ๐ฎ๐ป๐๐๐ฒ๐ฟ๐ ๐๐ถ๐๐ต๐ผ๐๐ ๐ฟ๐ฒ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด. ___________________________________________ ๐๐ผ๐ป๐๐ฒ๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด (๐ฅ๐๐ป๐๐ถ๐บ๐ฒ ๐๐ผ๐ป๐๐ฟ๐ผ๐น) ๐๐น๐ผ๐: 1. Set Context Scope โ Decide needed info. 2. Chunk Data โ Break into small pieces & embed. 3. Store in Vector DB โ Make searchable. 4. Retrieve Relevant Chunks โ Fetch only whatโs useful. 5. Query by User Input โ Match based on question. 6. Pick Closest Matches โ Get high-similarity results. 7. Build Context โ Assemble chunks. 8. Insert into Prompt โ Add to model input. 9. Stay Within Token Limit โ Avoid overload. 10. Keep Order & Format โ Ensure clarity. 11. Update Context โ Adjust as conversation grows. ๐ Best when you want AI to ๐ฎ๐ฐ๐ฐ๐ฒ๐๐ ๐น๐ฎ๐ฟ๐ด๐ฒ ๐ฑ๐ฎ๐๐ฎ ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐น๐ถ๐๐ฒ to give accurate and context-aware responses. โ ๐๐ป ๐๐ต๐ผ๐ฟ๐: โข ๐๐ถ๐ป๐ฒ-๐ง๐๐ป๐ถ๐ป๐ด โ Changes the model itself (permanent learning). โข ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด โ Changes ๐ฉ๐ฐ๐ธ ๐บ๐ฐ๐ถ ๐ข๐ด๐ฌ (better instructions). โข ๐๐ผ๐ป๐๐ฒ๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด โ Changes ๐ธ๐ฉ๐ข๐ต ๐ช๐ฏ๐ง๐ฐ ๐ต๐ฉ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ด๐ฆ๐ฆ๐ด (runtime memory). โ Repost for others in your network to help them understand.

Founder | Agentic AI...ย โขย 1m
What exactly is Context Engineering in AI? A quick 2-minute simple breakdown for you. ๐๐ถ๐ฟ๐๐, ๐ต๐ผ๐ ๐ถ๐ ๐ถ๐ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ ๐ณ๐ฟ๐ผ๐บ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด? โข ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด = crafting a single clever inp
See More
Founder | Agentic AI...ย โขย 9d
2 core ways AI learns and when to use each. Iโve explained each in a simple, detailed way below. ๐ฃ๐ผ๐ถ๐ป๐ 1: ๐๐ ๐๐ฒ๐ฟ๐ป๐ฎ๐น ๐๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ ๐ฅ๐๐ โข Pulls information from outside sources like APIs, PDFs, or databases โข Answers are based on
See More
Founder | Agentic AI...ย โขย 10d
Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ agent decides and builds an answer โ the answer is returned to th
See More
Hey I am on Medialย โขย 7m
โก๏ธ GPT-4.1 just dropped in ChatGPT This model is a beast: โก๏ธ Best-in-class for coding โ spots bugs, writes full web apps, no sweat. โก๏ธ Handles complex instructions โ throw in your massive, multi-step prompt. Itโll get it. โก๏ธ Insane context window โ
See More
Hey I am on Medialย โขย 6m
20 tips for coding by prompt โ and no, these arenโt just gimmicks. Most devs donโt realize how far prompt-based coding has come. Youโre not just asking for syntax help anymore. Youโre running full workflows, automating chores, and shipping faster โ
See More
Founder of Friday AIย โขย 22d
Adaptive Plugin: The next efficiency layer for Enterprise GenAI LLM workloads are exploding across finance, healthcare, SaaS, telecom, and government. The hidden drain is token waste from oversized prompts, long documents, and heavy chat histories.
See More
Exploring AI's poten...ย โขย 2m
How to Become a Prompt Engineer in 2025 In 2025, prompt engineering has become one of the most exciting and in-demand skills in the world of artificial intelligence. Whether itโs ChatGPT, Gemini, or Claude โ all AI tools rely on clear, structured pr
See MoreFounder | Agentic AI...ย โขย 3m
Well, Lovable is great for building apps. But how does Lovable actually produce full apps? I'll break down the entire process of how lovable works step by step. 1. ๐จ๐๐ฒ๐ฟ ๐๐ป๐ฝ๐๐ (๐ฃ๐ฟ๐ผ๐บ๐ฝ๐ ๐ฆ๐๐ฎ๐ด๐ฒ) โข You type your idea in Lovable (e.g.
See More
Download the medial app to read full posts, comements and news.