Back

Rahul Agarwal

Founder | Agentic AI... • 21d

3 ways how most AI systems are built. I’ve explained each one step-by-step. 1) 𝗧𝗿𝗮𝗱𝗶𝘁𝗶𝗼𝗻𝗮𝗹 𝗔𝗜 (𝘀𝘁𝗲𝗽-𝗯𝘆-𝘀𝘁𝗲𝗽) 1. 𝗦𝗲𝘁 𝘁𝗮𝘀𝗸 – Decide what problem the model should solve. 2. 𝗖𝗼𝗹𝗹𝗲𝗰𝘁 𝗱𝗮𝘁𝗮 – Gather lots of examples. 3. 𝗣𝗿𝗲𝗽𝗮𝗿𝗲 𝗱𝗮𝘁𝗮 – Clean and label it so the model learns correctly. 4. 𝗕𝘂𝗶𝗹𝗱 𝗶𝗻𝗱𝗲𝘅 – Make data searchable with embeddings. 5. 𝗧𝗿𝗮𝗶𝗻 𝗺𝗼𝗱𝗲𝗹 – Teach the model using the prepared data. 6. 𝗗𝗲𝗽𝗹𝗼𝘆 – Put the trained model into use. 7. 𝗚𝗲𝘁 𝗿𝗲𝘀𝘂𝗹𝘁𝘀 – Model answers queries based on training. 8. 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗲 – Measure performance and retrain if needed. _________________________________________________ 2) 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 (𝘀𝘁𝗲𝗽-𝗯𝘆-𝘀𝘁𝗲𝗽) 1. 𝗦𝗲𝘁 𝗴𝗼𝗮𝗹 – Give the agent a clear objective. 2. 𝗣𝗶𝗰𝗸 𝗟𝗟𝗠 – Use a language model as the agent’s brain. 3. 𝗖𝗼𝗻𝗻𝗲𝗰𝘁 𝘁𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀 – Link it to calendars, browsers, databases, etc. 4. 𝗦𝗲𝗮𝗿𝗰𝗵 & 𝗳𝗲𝘁𝗰𝗵 – Agent can look up info or call external services. 5. 𝗣𝗹𝗮𝗻 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄 – Breaks goal into steps, loops until complete. 6. 𝗗𝗲𝗰𝗶𝗱𝗲 𝗮𝗰𝘁𝗶𝗼𝗻𝘀 – Chooses next steps without human input. 7. 𝗘𝘅𝗲𝗰𝘂𝘁𝗲 𝘁𝗮𝘀𝗸𝘀 – Sends emails, runs scripts, calls APIs. 8. 𝗟𝗲𝗮𝗿𝗻 & 𝗶𝗺𝗽𝗿𝗼𝘃𝗲 – Adjusts based on outcomes over time. _______________________________________________ 3) 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗥𝗔𝗚 (𝘀𝘁𝗲𝗽-𝗯𝘆-𝘀𝘁𝗲𝗽) RAG = 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻. Agentic RAG combines agentic behavior with fast retrieval of grounded information. 1. 𝗦𝗲𝘁 𝗴𝗼𝗮𝗹 – Define the task clearly. 2. 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗲 𝗱𝗮𝘁𝗮 – Pull relevant docs or knowledge from databases. 3. 𝗩𝗲𝗰𝘁𝗼𝗿 𝘀𝗲𝗮𝗿𝗰𝗵 / 𝗔𝗣𝗜 𝗰𝗮𝗹𝗹𝘀 – Use embeddings and search indexes to find exact, relevant facts. 4. 𝗗𝗲𝘀𝗶𝗴𝗻 𝗺𝘂𝗹𝘁𝗶-𝘀𝘁𝗲𝗽 𝗽𝗿𝗼𝗰𝗲𝘀𝘀: Agent plans steps using the retrieved knowledge. 5. 𝗟𝗼𝗼𝗽 𝗹𝗼𝗴𝗶𝗰 – Retrieve → reason → act → verify. 6. 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗾𝘂𝗲𝗿𝘆 𝗔𝗣𝗜𝘀: Carry out actions (call services, update DB). 7. 𝗖𝗵𝗲𝗰𝗸 𝗿𝗲𝘀𝘂𝗹𝘁𝘀 – Verify answers against facts for accuracy. 8. 𝗥𝗲𝗳𝗿𝗲𝘀𝗵 𝗺𝗲𝗺𝗼𝗿𝘆 – Save outcomes into memory or vector DB so future tasks use updated info. 9. 𝗔𝗱𝗮𝗽𝘁 – System improves over time with stored results. _____________________________________________ ✅ Which to pick? • Use 𝗧𝗿𝗮𝗱𝗶𝘁𝗶𝗼𝗻𝗮𝗹 𝗔𝗜 when task is narrow, stable, and must be highly reliable (e.g., image recognition in a controlled domain). • Use 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 when automation of multi-step work is needed (scheduling, orchestration, admin tasks). • Use 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗥𝗔𝗚 when you need both action and factually grounded responses drawn from up-to-date data (customer support, codebase assistant, enterprise knowledge work). ✅ Repost this for others in your network.

1 Reply
8
17
1
Replies (1)

More like this

Recommendations from Medial

Image Description

Vishu Bheda

 • 

Medial • 3m

𝗔𝗜 𝘀𝘁𝗮𝗿𝘁𝘂𝗽𝘀 𝗰𝗮𝗻’𝘁 𝘀𝘂𝗿𝘃𝗶𝘃𝗲 𝗼𝗻 𝘁𝗵𝗲 𝗼𝗹𝗱 𝗦𝗮𝗮𝗦 𝗽𝗿𝗶𝗰𝗶𝗻𝗴 𝗺𝗼𝗱𝗲𝗹. Why? Because AI costs aren’t fixed. Things like: GPU time API calls Token processing Video rendering ...all get more expensive as users do

See More
Reply
7
21
1
Image Description
Image Description

vishakha Jangir

 • 

Set2Score • 5m

𝗧𝗵𝗶𝘀 𝗔𝗜 𝘀𝘁𝗮𝗿𝘁𝘂𝗽 𝗶𝘀 𝗰𝗵𝗼𝗼𝘀𝗲𝗻 𝗯𝘆 𝗚𝗢𝗜 𝘁𝗼 𝗰𝗿𝗲𝗮𝘁𝗲 𝗜𝗻𝗱𝗶𝗮' 𝗳𝗶𝗿𝘀𝘁 𝗻𝗮𝘁𝗶𝗼𝗻 𝘀𝗼𝘃𝗲𝗿𝗲𝗶𝗴𝗻 𝗟𝗟𝗠 !! Sarvam AI – Bulbul Initiative : Bulbul V2 is a text-to-speech (TTS) model developed specifically for the

See More
2 Replies
6
18

Rahul Agarwal

Founder | Agentic AI... • 6d

Fine-tune vs Prompt vs Context Engineering. Simple step-by-step breakdown for each approach. 𝗙𝗶𝗻𝗲-𝗧𝘂𝗻𝗶𝗻𝗴 (𝗠𝗼𝗱𝗲𝗹-𝗟𝗲𝘃𝗲𝗹 𝗖𝘂𝘀𝘁𝗼𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻) 𝗙𝗹𝗼𝘄: 1. Collect Data → Gather domain-specific info (e.g., legal docs). 2. Sta

See More
Reply
2
13
Image Description
Image Description

Vishu Bheda

 • 

Medial • 6m

𝗠𝗼𝘀𝘁 𝗽𝗲𝗼𝗽𝗹𝗲 𝘁𝗵𝗶𝗻𝗸 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗯𝘂𝘆𝘀 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝘀. Wrong. Microsoft buys 𝐦𝐨𝐦𝐞𝐧𝐭𝐮𝐦. 𝗟𝗼𝗼𝗸 𝗮𝘁 𝘁𝗵𝗲𝗶𝗿 𝗯𝗶𝗴𝗴𝗲𝘀𝘁 𝗺𝗼𝘃𝗲𝘀: 𝟏. 𝐇𝐨𝐭𝐦𝐚𝐢𝐥 (𝟏𝟗𝟗𝟕) — $𝟒𝟎𝟎𝐌 → 10M users in 18 months →

See More
4 Replies
12
28
Image Description
Image Description

vishakha Jangir

 • 

Set2Score • 8m

𝗔𝗿𝗲 𝘆𝗼𝘂 𝘂𝘀𝗶𝗻𝗴 𝘁𝗵𝗲𝘀𝗲 𝘁𝗼𝗽 𝗔𝗜 𝗮𝗽𝗽𝘀 ? If not then it's your turn now.... ↳ 𝗦𝗲𝗮𝗿𝗰𝗵 & 𝗥𝗲𝘀𝗲𝗮𝗿𝗰𝗵: ChatGPT : Conversational Al chat bot for generating text Claude : Best for code & detailed problem-solving DeepSeek:

See More
3 Replies
14
7
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI... • 1m

Simple explanation of Traditional RAG vs Agentic RAG vs MCP. 1. 𝗧𝗿𝗮𝗱𝗶𝘁𝗶𝗼𝗻𝗮𝗹 𝗥𝗔𝗚 (𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻) • 𝗦𝘁𝗲𝗽 1: 𝗨𝘀𝗲𝗿 𝗮𝘀𝗸𝘀 𝗮 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻. Example: “𝘞𝘩𝘢𝘵 𝘪𝘴 𝘵𝘩𝘦 𝘤𝘢𝘱𝘪�

See More
3 Replies
34
41
4

vishakha Jangir

 • 

Set2Score • 5m

𝗛𝗼𝘄 𝗸𝗵𝗮𝘁𝗮𝗯𝗼𝗼𝗸 𝘀𝘁𝗮𝗿𝘁𝘂𝗽 𝗯𝗲𝗰𝗮𝗺𝗲 𝗻𝗼 𝟭 𝗰𝗵𝗼𝗶𝗰𝗲 𝗳𝗼𝗿 𝗯𝘂𝘀𝗶𝗻𝗲𝘀𝘀𝗺𝗮𝗻 𝘁𝗼 𝗸𝗲𝗲𝗽 𝘁𝗵𝗲𝗿𝗲 𝗱𝗮𝘁𝗮 ? Founded by Ravish Naresh, who previously co-founded Housing.com Vision to digitize bookkeeping for small an

See More
Reply
4
Image Description
Image Description

Vishu Bheda

 • 

Medial • 5m

𝗪𝗵𝘆 𝗠𝗲𝘁𝗮 𝗢𝗽𝗲𝗻-𝗦𝗼𝘂𝗿𝗰𝗲𝘀 𝗜𝘁𝘀 𝗔𝗜 𝗠𝗼𝗱𝗲𝗹𝘀 — 𝗔𝗻𝗱 𝗪𝗵𝗮𝘁 𝗜𝘁 𝗧𝗲𝗮𝗰𝗵𝗲𝘀 𝗨𝘀 𝗔𝗯𝗼𝘂𝘁 𝗣𝗼𝘄𝗲𝗿 𝗶𝗻 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 Meta (Facebook’s parent company) does something most AI companies don’t: 𝐈𝐭 𝐠𝐢𝐯𝐞𝐬 𝐚𝐰𝐚�

See More
3 Replies
15
29
2

Download the medial app to read full posts, comements and news.