Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

2 main frameworks powering todayโ€™s AI workflows. Iโ€™ve explained both in simple steps below. ๐—ก๐Ÿด๐—ก (๐—Ÿ๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—™๐—น๐—ผ๐˜„) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) N8N lets AI follow a ๐˜€๐˜๐—ฟ๐—ฎ๐—ถ๐—ด๐—ต๐˜, ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„, moving step-by-step from input to output. 1. ๐—จ๐˜€๐—ฒ๐—ฟ ๐—œ๐—ป๐—ฝ๐˜‚๐˜ โ€“ User provides a query, data, or task request. 2. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ โ€“ The AI interprets the request and decides what needs to be done. 3. ๐—ง๐—ผ๐—ผ๐—น ๐—–๐—ฎ๐—น๐—น โ€“ The flow triggers an action such as an API call or function execution. 4. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† โ€“ Relevant details are stored for later steps or future context. 5. ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป โ€“ A logic check chooses the next path based on conditions. 6. ๐—Ÿ๐—Ÿ๐—  ๐—ฅ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐˜€๐—ฒ โ€“ The system generates a final answer for the user. This creates a clean, predictable pipeline that runs tasks in a ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ, ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ผ๐—ฟ๐—ฑ๐—ฒ๐—ฟ. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ (๐—ก8๐—ก): A user uploads an invoice โ†’ AI extracts the details โ†’ Tool Call sends it to your accounting software โ†’ Decision checks if fields are complete โ†’ LLM writes a confirmation โ†’ User receives a clean summary. _________________________________________________ ๐—Ÿ๐—”๐—ก๐—š๐—š๐—ฅ๐—”๐—ฃ๐—› (๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต-๐—ฏ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) LangGraph enables ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ, ๐˜€๐˜๐—ฎ๐˜๐—ฒ๐—ณ๐˜‚๐—น ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ that collaborate and take complex decisions using a shared memory. 1. ๐—ฆ๐˜๐—ฎ๐˜๐—ฒ โ€“ A shared memory space stores all information agents need. 2. ๐Ÿญ๐˜€๐˜ ๐—”๐—ด๐—ฒ๐—ป๐˜ โ€“ The primary agent reads the state and handles the first part of the task. 3. ๐Ÿฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜ โ€“ A secondary agent assists with deeper reasoning or specialization. 4. ๐—ง๐—ผ๐—ผ๐—น ๐—ก๐—ผ๐—ฑ๐—ฒ โ€“ External actions (APIs, databases, functions) are executed here. 5. ๐—–๐—ผ๐—ป๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ต๐—ฒ๐—ฐ๐—ธ โ€“ The system evaluates rules and decides which path to take. 6. ๐—ฅ๐—ฒ๐˜๐—ฟ๐˜† โ†’ ๐—–๐—ผ๐—ป๐˜๐—ถ๐—ป๐˜‚๐—ฒ โ€“ If something fails or needs refinement, the agent loops back to retry. 7. ๐——๐—ผ๐—ป๐—ฒ โ†’ ๐—˜๐—ป๐—ฑ โ€“ When all tasks are complete, the graph finalizes the output. This creates a ๐—ฑ๐˜†๐—ป๐—ฎ๐—บ๐—ถ๐—ฐ, ๐—ณ๐—น๐—ฒ๐˜…๐—ถ๐—ฏ๐—น๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„ where agents think, collaborate, and refine tasks until the best result is reached. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ (๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต): A chatbot receives a customer issue โ†’ Primary agent identifies the problem โ†’ Secondary agent searches past conversations for context โ†’ Tool Node checks order data โ†’ Condition Check sees missing details โ†’ Retry loop asks user for clarification โ†’ Agents collaborate โ†’ Final, personalized answer is generated ๐—œ๐—ป ๐˜€๐—ต๐—ผ๐—ฟ๐˜: โ€ข ๐—ก8๐—ก is for simple, linear workflows. โ€ข ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต is for smarter, branching, multi-agent flows. โœ… Repost for others in your network who can benefit from this.

1 Reply
6
Replies (1)

More like this

Recommendations from Medial

Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 27d

4 core ways multi-agent AI systems are designed. Iโ€™ve explained each one in simple steps below. 1. ๐—ฃ๐—ฎ๐—ฟ๐—ฎ๐—น๐—น๐—ฒ๐—น ๐—ฃ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป (๐˜š๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) โ€ข One input (task) comes in. โ€ข The task is ๐˜€๐—ฝ๐—น๐—ถ๐˜ ๐—ถ๐—ป๐˜๐—ผ ๐—ฝ๐—ฎ๐—ฟ๐˜๐˜€. โ€ข Multiple AI age

See More
Reply
4
10
1
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐—ง๐—ต๐—ฒ ๐— ๐—ฎ๐—ถ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ The main ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ is the ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ผ๐—ฟ. It has several capabilities: โ€ข ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ โ€“ Stores knowledge o

See More
Reply
6
19
1
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

LangGraph vs Autogen vs CrewAI, which to choose? I've given a breakdown of which is best for you. ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต (๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜… ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€) LangGraph is ideal for ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜…, ๐—บ๐˜‚๐—น๐˜๐—ถ-๐˜€๐˜๐—ฒ๐—ฝ ๐—”๐—œ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ

See More
Reply
12
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 10d

Most people building modern AI systems miss these steps. I've explained each step in a simple way below. 1. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† How multiple AI agents work together as a system. Step-by-step: โ€ข ๐—จ๐˜€๐—ฒ๐—ฟ ๐—ฅ๐—ฒ๐—พ๐˜‚๏ฟฝ

See More
2 Replies
1
8
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 15d

4 ways how AI systems communicate and coordinate. I've explained each one in detail below. 1. ๐— ๐—–๐—ฃ (๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—ฃ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น) โ€ข User submits a request: โ€œSummarize todayโ€™s Slack messages.โ€ โ€ข MCP Client receives input: Interface b

See More
1 Reply
5

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 13d

Most people even today don't know this about MCP. I've explained it in simple way below. AI systems fail because control logic lives inside prompts. MCP moves that control outside the model, where it belongs. 1. ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜ ๐—”๐—ฃ๐—œ ๐—ช๐—ฟ๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ฟ

See More
Reply
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ†’ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ†’ agent decides and builds an answer โ†’ the answer is returned to th

See More
Reply
2
7

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

2 ways AI systems today generate smarter answers. Iโ€™ve explained both in simple steps below. ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) RAG lets AI fetch and use real-time external information to ge

See More
Reply
1
7

Krishna Neogi

I proved Myself ๐Ÿ˜„ย โ€ขย 19d

๐Ÿ‘‰ The Big 3 Ai Agent UI (user Interface) are 70-75% are samed ๐Ÿค”๐Ÿค”.

Reply

Download the medial app to read full posts, comements and news.