Back

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4h

Most people ignore how AI actually searches. I've explained in a simple way below. 1: ๐—˜๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ (๐—ง๐˜‚๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐˜๐—ฒ๐˜…๐˜ ๐—ถ๐—ป๐˜๐—ผ ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ๐˜€) Computers donโ€™t understand text like humans do. So the first job is to ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜ ๐˜๐—ฒ๐˜…๐˜ ๐—ถ๐—ป๐˜๐—ผ ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ๐˜€. โ€ข Your text โ†’ AI model โ†’ ๐˜ƒ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ (๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ๐˜€) โ€ข These numbers capture the ๐˜ฎ๐˜ฆ๐˜ข๐˜ฏ๐˜ช๐˜ฏ๐˜จ, not just the words. This process is called ๐—ฒ๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด. __________ 2: ๐—•๐—ถ-๐—˜๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ (๐—˜๐—ป๐—ฐ๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—พ๐˜‚๐—ฒ๐—ฟ๐˜†/๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐˜€๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ฒ๐—น๐˜†) Now AI handles ๐˜๐˜„๐—ผ ๐˜๐—ต๐—ถ๐—ป๐—ด๐˜€ ๐˜€๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ฒ๐—น๐˜†: 1. Your ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—พ๐˜‚๐—ฒ๐—ฟ๐˜† 2. All the ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€/๐—ฎ๐—ฟ๐˜๐—ถ๐—ฐ๐—น๐—ฒ๐˜€ Both are: โ€ข Converted into vectors โ€ข Stored in a database Why separately? Because this makes search ๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—ณ๐—ฎ๐˜€๐˜. AI compares both and find the closest matches. __________ 3: ๐—–๐—ฟ๐—ผ๐˜€๐˜€-๐—˜๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ (๐——๐—ฒ๐—ฒ๐—ฝ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ผ๐—ณ ๐—ฟ๐—ฒ๐—น๐—ฒ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ) Bi-Encoder is fast, but not super precise. So for top results, AI does something smarter: โ€ข It ๐—น๐—ผ๐—ผ๐—ธ๐˜€ ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐—พ๐˜‚๐—ฒ๐—ฟ๐˜† ๐—ฎ๐—ป๐—ฑ ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜ ๐˜๐—ผ๐—ด๐—ฒ๐˜๐—ต๐—ฒ๐—ฟ โ€ข Reads them side-by-side โ€ข Decides how well they truly match This produces a ๐—ฟ๐—ฒ๐—น๐—ฒ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐˜€๐—ฐ๐—ผ๐—ฟ๐—ฒ. __________ 4: ๐—ฅ๐—ฒ-๐—ฅ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฟ (๐—ฅ๐—ฒ๐—ผ๐—ฟ๐—ฑ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€) Now AI has a list of good results. The ๐—ฅ๐—ฒ-๐—ฅ๐—ฎ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น: โ€ข Takes the top results โ€ข Reorders them from ๐—ฏ๐—ฒ๐˜€๐˜ โ†’ ๐˜„๐—ผ๐—ฟ๐˜€๐˜ โ€ข Pushes the most useful result to the top This is why the ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜ ๐˜‚๐˜€๐˜‚๐—ฎ๐—น๐—น๐˜† ๐—ณ๐—ฒ๐—ฒ๐—น๐˜€ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜. __________ 5: ๐——๐—ฒ๐—ป๐˜€๐—ฒ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น (๐— ๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด-๐—ฏ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต) This is search based on ๐—บ๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด, not exact words. โ€ข Uses embeddings (vectors) โ€ข Uses ANN search (fast similarity search) โ€ข Finds documents that ๐˜ฎ๐˜ฆ๐˜ข๐˜ฏ the same thing as your query Words are different, meaning is same, AI still finds it. __________ 6: ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐˜€๐—ฒ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น (๐—ž๐—ฒ๐˜†๐˜„๐—ผ๐—ฟ๐—ฑ-๐—ฏ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต) This is the ๐˜๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต method. โ€ข Looks for exact keywords โ€ข Counts matches โ€ข Works great for: Names | Codes | Technical terms ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ: Search: โ€œSection 230 Actโ€ Exact keyword matching works best here. __________ 7: ๐—›๐˜†๐—ฏ๐—ฟ๐—ถ๐—ฑ ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต AI now combines: โ€ข ๐——๐—ฒ๐—ป๐˜€๐—ฒ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต (meaning) โ€ข ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐˜€๐—ฒ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต (keywords) Why? Because: โ€ข Meaning search misses exact terms sometimes โ€ข Keyword search misses intent ๐—›๐˜†๐—ฏ๐—ฟ๐—ถ๐—ฑ ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต = ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฎ๐—ฐ๐—ฐ๐˜‚๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€ __________ 8: ๐—ฅ๐—ฒ๐—ฐ๐—ถ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฎ๐—น ๐—ฅ๐—ฎ๐—ป๐—ธ ๐—™๐˜‚๐˜€๐—ถ๐—ผ๐—ป (๐—ฅ๐—ฅ๐—™) Now AI has ๐˜๐˜„๐—ผ ๐—ฟ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฑ ๐—น๐—ถ๐˜€๐˜๐˜€: โ€ข One from dense search โ€ข One from sparse search RRF: โ€ข Combines both lists โ€ข Gives importance to results that appear high in both โ€ข Produces ๐—ผ๐—ป๐—ฒ ๐—ณ๐—ถ๐—ป๐—ฎ๐—น, ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ป ๐—น๐—ถ๐˜€๐˜ This final list is what you see on your screen. AI search isnโ€™t magic. Itโ€™s careful encoding, retrieval, and ranking working together. โœ… Repost for others so they can also understand this.

Reply
3

More like this

Recommendations from Medial

Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

How Multi-Agent AI systems actually work? Explained in a very simple way. Read below: -> ๐—ง๐—ต๐—ฒ ๐— ๐—ฎ๐—ถ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ The main ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ is the ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ผ๐—ฟ. It has several capabilities: โ€ข ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ โ€“ Stores knowledge o

See More
Reply
6
19
1
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

How do Voice, Coding & Computer Agents work? I've explained each one in a very simple way below. 1. ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ AI systems that talk with people using speech. Examples: Vapi, Retell AI, OpenAI TTS etc. ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€: 1. ๐—จ๐˜€๐—ฒ๐—ฟ ๐˜€๐—ฝ๐—ฒ๐—ฎ๏ฟฝ

See More
2 Replies
5
17
Image Description

Baqer Ali

AI agent developer |...ย โ€ขย 10m

It is tough to keep up with the updates in the ai field I was mostly involved and I was preparing for the next Hackathon Aim : To make beautiful 3D websites from screenshots Yes taking designs from pinterest and just coding it up. Tried V0 lo

See More
1 Reply
1
8
Image Description
Image Description

Rakshak Gupta

ย โ€ขย 

Quixyย โ€ขย 1y

When learning a course, we often have to rewatch entire videos to clear doubts, even with timestamps. can an AI-powered course assistant that lets us: Chat with the AI: Ask specific questions and get precise answers. Contextual Search: Find the exac

See More
3 Replies
1

Account Deleted

Hey I am on Medialย โ€ขย 9m

"Google is cooked. Amazon is cooked. Meta? Probably less cooked." - Guillermo Flor, VC investor AI is fundamentally changing the internet. Weโ€™re moving away from: โ€จ->Social media dominanceโ€จ->Brand-first marketingโ€จ->Fancy websites & funnels And mov

See More
Reply
8

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

Steps to building AI systems with LLM's. I've given a simple detailed explanation below. ๐—ฆ๐˜๐—ฒ๐—ฝ 1 โ€“ ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€) โ€ข These are the ๐—ฏ๐—ฟ๐—ฎ๐—ถ๐—ป๐˜€ of the system. โ€ข Examples: GPT (OpenAI), Gemini, Claude etc. โ€ข Th

See More
Reply
8
8
Image Description
Image Description

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 4m

3 ways how most AI systems are built. Iโ€™ve explained each one step-by-step. 1) ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—”๐—œ (๐˜€๐˜๐—ฒ๐—ฝ-๐—ฏ๐˜†-๐˜€๐˜๐—ฒ๐—ฝ) 1. ๐—ฆ๐—ฒ๐˜ ๐˜๐—ฎ๐˜€๐—ธ โ€“ Decide what problem the model should solve. 2. ๐—–๐—ผ๐—น๐—น๐—ฒ๐—ฐ๐˜ ๐—ฑ๐—ฎ๐˜๐—ฎ โ€“ Gather lots of example

See More
1 Reply
8
18
1

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 2m

2 ways AI systems today generate smarter answers. Iโ€™ve explained both in simple steps below. ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) (๐˜ด๐˜ต๐˜ฆ๐˜ฑ-๐˜ฃ๐˜บ-๐˜ด๐˜ต๐˜ฆ๐˜ฑ) RAG lets AI fetch and use real-time external information to ge

See More
Reply
1
7

Rahul Agarwal

Founder | Agentic AI...ย โ€ขย 1m

Hands down the simplest explanation of AI agents using LLMs, memory, and tools. A user sends an input โ†’ the system (agent) builds a prompt and may call tools and memory-search (RAG) โ†’ agent decides and builds an answer โ†’ the answer is returned to th

See More
Reply
2
7

Arpan Mukherjee

Frontend Developer ...ย โ€ขย 4m

Iโ€™m building a site for JEE and NEET students. The idea is simple instead of running behind 1000s of questions, here youโ€™ll get only the high weightage chapters that actually matter. Every chapter will have clear explanations, all the important formu

See More
Reply
1

Download the medial app to read full posts, comements and news.